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1 - Introduction

Measurements of real-time and off-line electrodyitamf the human
brain have evolved over the years and one purpiabéesgaper is to provide
simple hand calculator equations to facilitate géadization and the
implementation of standardized methods. We bedgjimthe fact that the
brain weighs approximately 2.5 pounds and conswappsoximately 60%
of blood glucose (Tryer, 1988) and consumes as raxggen as our
muscles consume during active contraction, 24 hawlay. How is this
disproportionate amount of energy used? The anisvieat it is used to
produce electricity including synchronized and ediive actions of small
and large groups of neurons linked by axonal amdldgc connections.
Each neuron is like a dynamically oscillating battdaat is continually
being recharged (Steriade, 1995). Locally coreteoeurons recruit
neighboring neurons with a sequential build uplettical potential
referred to as the recruiting response and the anging response also
called EEG “burst activity” and “spindles” (Thatechend John, 1977;
Steriade, 1995). EEG burst activity is recogniagaépindle shaped waves
that wax and wane (i.e., augmenting by sequentidd lnp, then asymptote
and then decline to repeat as a waxing and warattgrp) are universal and
are present in delta (1 — 4 Hz) theta (4-7.5Hphal(8 to 12 Hz), beta (12.5
Hz to 30 Hz) and gamma (30 Hz — 100 Hz) frequerasydis during waking
in normal functioning people. Another fundamerfiak is that only



synchronized cortical neurons produce the elettraalled the
electroencephalogram and the generators are ldapaied near to the
electrode location with approximately 50% of thepéitude produced
directly beneath the recording electrode and apprately 95% within a 6
cm radius (Nunez, 1981; 1995). Unrelated distantces produce lower
amplitude potentials by volume conduction that addubstract at a zero
phase difference between the source and the sugéms®rs. Locally
synchronized neurons are connected to distant grobipeurons (3 cm to 21
cm) via cortico-cortical connections (Braitenbet§78; Schulz and
Braitenberg, 2002) and are connected to localiaesters or populations of
neurons that exhibit significant phase differenmedelays due to axonal
conduction velocities, synaptic rise times, syrmalatcations and other
neurophsyiological delays that can not be prodigedolume conduction
which is defined at Phase Difference = 0. Cotimiégis defined as the
magnitude of coupling between neurons, indepenafevillume conduction.
This is because in this paper we are interestétkiisynchronous coupling
and de-coupling of local and long distance popaitetiof neurons that add
together and give rise to the rhythmic patternthefEEG seen at the scalp
surface (i.e., dynamic connectivity). Much hasrblearned about brain
function in the last few decades and EEG biofeeklib@control robotic
limbs coupled with PET and fMRI cross-validationtleé location of the
sources of the EEG shows that the future of quetive EEG or QEEG is
very bright and positive because of the realityhef neurophysics of the
brain and high speed computers. 3-dimension& E&irce localization
methods have proliferated with ever increased abasolution and cross-
validation by fMRI, PET and SPECT. Understandimgasurements of
coupling between populations of neurons in 3-dinmersusing 3-
Dimensional Source analysis such as by Michael i§¢liechard
Greenblatt, Mark Pflieger, Fuchs, Roberto Marqusdeal and others in the
last 20 years. An easily applied “Low Resoluti€lectromagnetic
Tomography” is one of the better localization mekhalthough it does offer
resolutions of only 3 — 6 cm, but nonetheless, nmaetter than the
alternative of zero 3-dimensional resolution tr@tventional EEG provides
Pascual-Marqui, 1999; Pascual-Marqui et al, 200Gtdher et al, 1994;
2005a; 2005b; 2006; Gomes and Thatcher, 2001)em#hasized by many,
it is critical to understand how widely distanticats of the brain
communicate before one can understand how the a@iks. It is in
recognition of the importance of understandingrbcainnectivity especially
using explicit and step by step methods that tlesgmt paper was
undertaken. We attempt to use hand calculatqgslsiity when ever



possible and this is why the cospectrum and quatispe are in simple
notation such as a(x) or u(y) to represent diffevatues that are added or
multiplied. The hand calculator equations in ec® are important as a
reference for a programmer or a systems analysistglement in a digital
computer and thereby provide testable standardsiamlicity.

2- EEG Amplitude

Nunez (1994) estimated that 50% of the amplitugges from directly
beneath the scalp electrode and approximately 85&ithin a 6 cm
diameter. Cooper et al (1965) estimated thatrtimmal dipole surface
area necessary to generate a potential measurabidte scalp surface is 6
cn? which is a circle with a diameter = 2.76 cm. Hwer, the amplitude of
the EEG is not a simple matter of the total nunddexctive neurons and
synapses near to the recording electrode. For@earolume conduction
and synchrony of generators are superimposed axebrm the waves of
the EEG. Volume conduction approximates a gauspatial distribution
for a given point source and volume conductiorhefélectrical field occurs
at phase delay = 0 between any two recording pdintg speed of light)
(Feinmann, 1963). If there is a consistent andifsggnt phase delay
between distant synchronous populations of neusossurces, for example,
a consistent 30 degree phase at 6 to 28 cm, tiephhse difference can not
be explained by volume conduction. Network préipsrare necessary to
explain the EEG findings. This emphasizes theoingmce of phase
differences between different EEG channels thalomaed at different
positions on the human scalp. A large phaseriffce can not be
explained by volume conduction and the stabilitplofse differences
influences the amplitude of the EEG as well. atatically, phase can
only be measured using complex numbers, howevetryweith our hand
calculator equations to both explain this and nekalable simple
equations that use the cospectrum and quadspe(taapage 23 section
10). However, it is important to note that comphesnbers are necessary at
a fundamental level of physics in which the eleeirfield and quantum
mechanics both rely upon complex numbes and nas@lé obeys the
algebra of complex numbers. One wonders if thesighl laws of the
universe dictate the evolution of human mathembitiw@ntion? The
human mind tends to find and extend the laws olithieerse by a recurrent
loop back on itself?

The importance of the synchrony of a small peagabf the synaptic
sources of EEG generators is far greater tharotakriumber of generators.
For example, Nunez (1981, 1994) and Lopes da §11984) have shown



that the total population of synaptic generatorthefEEG are the
summation of : 1- a synchronous generator (M) compant and, 2- an
asynchronous generator (N) compartment in whichrdlagive contribution

to the amplitude of the EEG is A M VN . This means that synchronous
generators contribute much more to the amplitudet® than
asynchronous generators. For example, assumtetaDgenerators in
which 10% of the generators are synchronous ork=0" and N = 9 x

10" then EEG amplitude 20°+/9x10° , or in other words, a 10% change in
the number of synchronous generators results $1fal@ increase in EEG
amplitude (Lopez da Silva, 1994). Blood flow sasgdof intelligence often
report less blood flow changes in high I.Q. groopsipared to lower 1.Q.
subjects (Haier et al, 1992; Haier and Benbow, 1986sovec and
Jausovec, 2003). Cerebral blood flow is generaligted to the total
number of active neurons integrated over time, é.¢.20 minutes
(Yarowsky et al, 1983: 1985; Herscovitch, 1994 contrast, EEG
amplitude as described above is influenced by timelh®er of synchronous
generators much more than by the total number éigeors and this may
be why high 1.Q. subjects while generating morecbyonous source current
than low 1.Q. subjects often fail to show greatetrebral blood flow
(Thatcher et al, 2006).

3- What is Volume Conduction and Connectivity?

The EEG has a dual personality. One personaiityhe electrical
fields of the brain which operate at the speedgbit where dipoles
distributed in space turn on and off and oscil&tdifferent amplitudes and
frequencies. Paul Nunez’'s book “Electrical Fiedfishe Brain”, Oxford
Univ. Press, 1981 is an excellent text especiallsegard to the electrical
personality of the EEG. The other personalityhef EEG is the source of
the electrical activity which is an excitable mediumuch like a forest fire
in which the fuel at the leading edge of the fesuits in a traveling wave
with ashes left behind representing a long duratedractory period.

Hodkin and Huxley wrote the fundamental excitabkdiam equations of
the brain in 1952 for which they later received Nabel prize. The
excitable medium of the brain are the axons, syegmendritic membranes
and ionic channels that behave like “kindling” la¢ teading edge of a
confluence of different fuels and excitations. s Aentioned previously, the
majority of the cortex about 80% is excitatory widturrent loop
connections yet there is no epilepsy in a healtaynb How is such

stability possible with such an abundance of pasiteedback? The answer



Is because there are relatively long refractoryoglsr(after action potentials
and after potentials) and this single propertyesponsible for the self-
organizational stability of the neocortex. Givars introduction, “EEG
Connectivity” is a property of the “excitable meghtiof axons, synaptic
rise and fall times and burst durations of neurms is defined by the
magnitude of coupling between neurons. Magnitgsdgpically defined by
the strength, duration and time delays as measyretkectrical recording of
the electrical fields of the brain produced by ¢éxeitable medium.
Connectivity does not occur at the speed of ligiat i3 best measured when
there are time delays, in fact, volume conductibelectricity is not a
property of the excitable medium and it occursesibzime delay. This
important property of the excitable medium soufethe EEG versus the
electrical properties means that time delays detexr whether or not and to
the extent that an excitable medium is responséiléhe electrical
potentials measured at the scalp surface. Volwnduction defined at
zero phase lag is the electrical personality agddd correlations is the
excitable medium personality of EEG.

Coupled oscillators in an excitable medium arettipec of this paper
starting with the genesis of the electrical potdatbeing ionic fluxes across
polarized membranes of neurons with intrinsic ringhand driven rhythms
(self-sustained oscillations) as described by &ter(1995) and Nunez
(1981; 1994).

Electrical events occur inside of the human bodictvis made up of
3-dimensional structures like membranes, skin asdi¢s that have volume.
Electrical currents spread nearly instantaneoilmstyughout any volume.
Because of the physics of conservation there manbe between negative
and positive potentials at each moment of time wsfifht delays near to the
speed of light (Feynmann, 1963). Sudden syndu®synaptic potentials
on the dentrites of a cortical pyramidal cell résula change in the
amplitude of the local electrical potential refekte as an “Equivalent
Dipole”. Depending on the solid angle betweensierce and the sensor
(i.e., electrode) the polarity and shape of thetalmal potential is different.
Volume conduction involves near zero phase delaywden any two points
within the electrical field as collections of dipsloscillate in time (Nunez,
1981). As mentioned previously, zero phase dislaye of the important
properties of volume conduction and it is for ttaason that measures such
as the cross-spectrum, coherence, bi-coherencectredence of phase
delays are so critical in measuring brain connégtimdependent of volume
conduction.



When separated generators exhibit a stable phHsesdice of, for
example, 30 degrees then this can not be explaipedlume conduction.
As will be explained in later sections correlatowefficient methods such as
the Pearson product correlation (e.g., “co-modoitétand “Lexicor
correlation”) do not compute phase and are theeafarapable of
controlling for volume conduction. The use of gdex numbers and the
cross-spectrum is essential for studies of brammeotivity not only because
of the ability to control volume conduction but@lsecause of the need to
measure the fine temporal details and temporabtyisif coupling or
“connectivity” within and between different regioakthe brain.

Figure 1 is an illustration of the cross-spectrdmaume conduction
vS. connectivity in which a sine wave is generatstte a sphere with
sensors on the surface. The top shows the zaseghg recordings of a
sine wave and illustrates volume conduction in White solid angle from
the source to the surface is equal in all direstio he bottom shows
recordings with significant phase differences wtaah not be accounted for
by volume conduction and must be due to “connestionthe interior of
the sphere. As discussed in more detail in se&jdhe cross-spectrum is
the sum of the in-phase potentials (i.e., cospegtand out-of-phase
potentials (i.e., quadspectrum). The in-phase coapt contains volume
conduction and the synchronous activation of loealral generators. The
out-of-phase component contains the network or ectivity contributions
from locations distant to a given source. In otherds, the cospectrum =
volume conduction and the quadspectrum = non-volconeluction which
can be separated and analyzed by independentlyatva the cospectrum
and quadspectrum (see section 9).

! Theoretically, large phase differences can beyred by volume conduction when there is a deep and
temporally stable tangential dipole that has atp@sand negative pole with an inverse electricatfat
opposite ends of the human skull. In this instaphase difference is maximal at the spatial ex¢eand
approximates zero half way between the two endseo§tanding dipole. However, this is a special
situation that is sometimes present in evoked pialestudies but is absent in spontaneous EEGesudi

In the case of spontaneous EEG there is no timketbevent by which to synchronize potentials thatiit
in a standing dipole, instead, there is an instetdas summation of millions of ongoing rhythmic
pyramidal cell dipoles with different orientatioageraged over time.



Cmss—Spectral Power = Volume Conduction + Connectivity
{(Cospectrum + Quadspectrum})

7q>§ Volume Conduction
Phase delay =0
t=0 Quadspectrum =0

Time

Phase Delays

Connectivity
Phase Delay > 0
N Quadspectrum > 0

Fig. 1 — lllustration of volume conduction vs. cewtivity. Top is a sine
wave generator in the center of a sphere with sersothe surface of the
sphere. The sine wave generates zero phaselagesgaves at all points
on the surface of the sphere due to volume corwlucti The cospectrum ig
high and the quadspectrum = 0. The bottom is#mee sine wave
generator in the center of the sphere but with a&kwonnections in the
interior of the sphere. As a consequence therglaase differences in the
surface recordings which are detected in the quedispn component of th
cross-spectrum. See section 9 for details.

Another illustration of the relationship between-Phase” and
volume conduction vs. “Out-of Phase” and connetstiig in figure 2.



Cross-Spectrum = Volume Conduction + Connectivity

In-Phase Out-of-Phase
cospectrum quadspectrum
Phase Delay = 0 deg Phase Delay > 0 deg

Fig. 2- lllustration of the “In-Phase” volume comtion vs. “Out-of-Phase” connectivity
components of the Cross-Spectrum. See sectionfidce details.

In NeuroGuide it is simple to test the “In-Phags™Out-of-Phase”
analyses by using sine waves and shifting onevgawe with respect to a
second sign wave and then computing the cospeenshgquadspectrum.
To test the cospectrum and quadspectrum downloadoieliide from
http://www.appliedneuroscience.com/Contact%20Dowadiohtmand after
launching NeuroGuide click File > Open > Signal &=tion and then enter
sine waves at different phase shifts for a givequency and then compute
the cospectrum and quadspectrum. Figure 3 showsgample of the




in-Phase (cospectium) & Out-of-Phase (quadspectium) Power
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Fig. 3- Example of cospectrum (in-phase) and quectspm (out-of-phase) power using
two 5 Hz sine waves shifted by 10 degrees from B degrees. Blue diamonds are the
in-phase cospectrum values and the red squaréiseacait-of-phase quadspectrum power
values.

The use of the quadspectrum or “Out-of-Phase” egatjpn is a
method to remove zero phase lag from the computaticoherence and
thus is volume conduction corrected coherencerafsored to as Zero-
phase lag removed coherence (Nolte et al, 200&uakMarqui, 2007).

4- How is network zero phase lag different from vimme conduction?

Spatially distributed neurons exhibit near zeragghdifference,
referred to as a “binding” or “synchrony” withimn@twork of neurons,
which is independent of volume conduction (Ekhdralg1988; Gray et al,
1989, John, 2005; Thatcher et al, 1994). Thethak is the master
synchronizer of the EEG and “binding” at zero phagecan easily be
produced by the centrally located thalamus (seeaBts 1995). Multiple
unit recordings and Magnetic electroencephalogrdptiyG) which is
invisible to volume conduction have firmly estabbsl the scientific validity
of network zero phase lag independent of volume&lagotion (Rogers,



1994). The thalamus and septo-hippocampal systeensentrally located
inside of the brain and contains “pacemaker” nesig@md neural circuits that
regularly synchronize widely disparate groups ofical neurons (Steriade,
1995). Asiillustrated in Figure 4, a centrapyehronizing structure “C”
can produce zero phase lag and simultaneously symzk neural
populations “A” and “B” without any direct conneati between “A” and

“B”. As shown in figure 3 the cross-spectruntoherence and phase
difference can distinguish between volume condudciiod network zero
phase differences such as produced by the thalanthe septal-
hippocampus-entorhinal cortex, etc. For examptbe phase difference is
uniformly zero in the space between “A” and “B” thihis is volume
conduction. On the other hand if the phase diffeeds not zero at points
spatially intermediate between “A” and “B” thenghs an example of zero
phase difference independent of volume conductidms is why a larger
numbers of electrodes is important and why dipoleee reconstruction can
help resolve thalamic synchronization of corticalies. The study by
Thatcher et al, 1994 is an example of significdrage differences at
intermediate short distances in contrast to zesseldifference between
more distant locations which can not be explaingddlume conduction.

In the chapters below we begin with a discussiocooifelation, then
coherence and phase difference and then bi-spett@ashow that there is a
commonality shared by all of these measures —dhewnality is the
statistical “degrees of freedom”. Each measureodical network
dynamics involves the detection of a “signal” witlinoise” and each
measure shares the same statistical propertieglyancreased sample
Sizes are proportional to increased sensitivity ianteased accuracy of the
estimates of coupling.

5- Pearson product correlation (“comodulation” andLexicor “spectral
correlation coefficient”)

The Pearson product correlation coefficient igmfised to estimate
the degree of association between amplitudes onitualgs of the EEG over
intervals of time and frequency (Adey et al, 196Ihe Pearson product
correlation coefficient does not calculate a crgissetrum and therefore
does not calculate phase nor does it involve thesomement of the
consistency of phase relationships such as witkeresite and the bi-
spectrum. However, coherence and the Pearsongirodrrelation
coefficient are statistical measures and both depearthe same number of
degrees of freedom for determining the accuradh®imeasure as well as
the same levels of statistical significance. WPeearson product correlation



coefficient is a valid and important measure ofgdimg and it is normalized
and independent of absolute values.

The Pearson product correlation coefficient (P@@$ been applied
to the analysis of EEG spectra for over 40 yearsexample, some of the
earliest studies were by Adey et al (1961); Jir{dex6) Paigacheva, I.V.
and Korinevskii (1977). The general method isdmpute the auto power
spectrum for a given epoch and then to computedhelation of power or
magnitude over successive epochs, i.e., over tiflee number of degrees
of freedom is determined by the number of epocNguroscan, Inc. offered
this method of EEG analysis in the 1980s. Rdgethie application of the
Pearson product correlation coefficient (PCC) fagmtude has been called
“comodulation” (Sterman and Kaiser, 2001). Belsuwhe general equation
for the computation of “spectral correlation” opéctral amplitude
correlation” and the recent term “comodulation” ahis a limited term
because it fails to refer to the condition of‘as®urce affecting two other
sources without the two sources being directly eoted. It is also limited
because comodulation can not correct for volumelgotion. The term “co-
modulation” has a different meaning than “synchzation” (Pikovsky et al,
2003) and in order to reduce confusion it is besimply refer to the
correlation itself. In other words, it is bestuge the term “Correlation” or
“Pearson product correlation coefficient” (PCC)asd additional path
analyses or partial correlation analyses were tsstow that “co-
modulation” and not a®modulator “C” is the correct model or that these i
no synchrony involved. Figure 3 illustrates thifedences in meaning
when using the terms “Correlation” vs the term “Gualulation”. Coherence
has the same problem as the correlation in disshing a & source.
However the term coherence, like correlation, dagsvrongly assume
comodulation.



Pearson Product Co-Modulation
Comelation Coefficient

1- A B 1- A B
A B
5. B ‘C’ Dynamics are
Assumed Not to Exist

Fig. 4 — The correlation coefficient (and cohergngeludes at least two possible
couplings and mixtures of these two types of cagplil- where neuron A
influences neuron B and vice versa and, 2- whéh&@neuron ‘C’ influences
neuron A and neuron B and there is no connectitwdsn A and B. Co-
modulation omits the standard ‘C’ possibility asdimited to where neuron A
influences neuron B and vice versa. The limitatbthe term “comodulation” i$
that without partial correlation analyses or pathlgses it is not possible to omit
coupling number 2 which means that the term conadiul can be misleading
unless these additional analyses are conducted.

As discussed by Pikovsky et al (2003) the term rfatohn is
complicated and it is possible for there to be nhattion without
synchronization and synchronization without modatat As stated by
Pikovsky et al (2003, p. 77) “Generally, modulati@ithout synchronization
Is observed when a force affects oscillations,dauminot adjust their
frequency.” Without further analyses to deterntime distinction it is best
to simply refer to amplitude or power correlation.

The distinguishing characteristic of the applicatof the Pearson
product correlation coefficient is the computatajrthe time course of the
normalized covariance of spectra over an interéhte:



Eq. 1-
(X = X)(Y -Y)
r= A — —
(2 =X =YY
or the computationally simpler equation that one @ampute more easily
using a hand calculator:

Eq. 2 -

o NY XY -3 XTY
JINE X2 = (X X))NZY? = (XY))

For example, if one computes the FFT over 1 seepodhs for a 60
second recording period, i.e., N = 60, then thelmemof degrees of freedom
in the spectral correlation coefficient (SCC) foaonels X and Y =60 -1 =
59. For 59 degrees of freedom then a correlatidn2b8 or higher is
statistically significant at P < .05. This is digtaand commonly used
connectivity measure, however, it is importantdamember that the
correlation coefficient includes volume conductionetwork connectivity,
l.e., they are inextricably confounded. This isdiese the correlation
coefficient omits phase difference and involves“thephase” or
autospectral values and therefore volume conductomot be separated
and eliminated. This makes it more difficult tookv if factors such as the
number and strength of connections are what anegihg due to
experimental control or is it the “volume conduatidhat is changing? As
explained in section 8, coherence using complexbaimand phase
differences separate volume conduction from netwlgriamics and
automatically solve this problem.

Another method of applying the Pearson Productetation was
developed by Lexicor, Inc. in the 1990s. Thishoetcomputes the
correlation between EEG spectra measured from tiiereht locations and
uses the individual spectral bin values withinegjtrency band. For
example, if there are five frequency bins in thghalfrequency band (i.e.,
8Hz, 9Hz, 10Hz, 11Hz and 12Hz), then N = 5 andnilm@ber of degrees of
freedom =N -1 =4. When the degrees of freedahthen a correlation
coefficient of 0.961 or higher is necessary in otdeachieve statistical
significance at P <.05. Equations 1 and 2 ard tsealculate the Pearson
product correlation in both instances.



Dr. Thomas Collura recently evaluated the commaéealand
differences between “comodulation” and the Lexiagpplication of the
Pearson product correlation (Collura, 2006). Iswhown that the
difference between the “co-modulation” and Lexiowthods is primarily in
terms of the number of degrees of freedom as \gdha evaluation of
covariance of spectral energies over time in theéw application of the
Pearson Product correlation versus within frequdaasyd covariation across
channels in the Lexicor method of applying the Baeaproduct correlation.

Below is a hand calculator example of a Lexicorli@ption of the
Pearson product correlation coefficient for théhalfrequency band (8 — 12
Hz column on the left) between channel X and chihYinesing easy
numbers for a hand calculator using equation 2 iWith5 (i.e., number of
spectral bins within a band and the number of degoé freedom = 4).

Table |
X (uV) YwV) Xuwvd) | Y (uvd) XY
8Hz 1 2 1 4 2
9Hz 2 1 4 1 2
10Hz 3 2 9 4 6
11Hz 3 1 9 1 3
12Hz 4 2 16 4 8
YX=13 [YY=8 |¥X*=39 [YY?=18 |[YXY=21
‘o NY XY -3 X>Y
JINZXZ = (ZX)P)NZY? = (ZY))
5x21-13x8

r =
J(6%x39-13)(5x18-8?)

r= 1 - +0.001479

A\ 26% 26

Figure 5 shows the results of the BrainMaster @am@ntation of the
Lexicor spectral correlation method in which vergthcorrelation values
are present because of the low number of degrefeseafom and especially
the divergent differences at higher frequenciesibge of slight differences
in filtering.  This figure emphasizes that exteecaution should be used
when computing a correlation coefficient using ltiegicor method with low
degrees of freedom.



Comparison of Lexicor SCC and BrainMaster SCC

Trial Run 3/31/0&

LEXICOR RUNTIME |REPLAY REPLAY

|DELTA 92 4

| THETA 934
ALPHA 90.9
|BETA 94 6
| GAMMA 88.6

94.77
55.79
55 91
B3.56
63.05
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9212
56.19
9335
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NOTCH
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92.26
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G0 & 50
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92.16
9293
91.98
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7042
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Fig. 5 - Comparisons between the BrainMaster asmddor implementation of the
spectral correlation method. The correlation galare all very high due to the low
degrees of freedom and miss-match of calculati@urscat the higher frequencies
depending on the filter parameters (From Colluff&).

LORETA source correlations are another examplt@fpplication

of the Pearson product correlation coefficient ¢€har et al, 2006).

are examples of the relationship between cortiatiead connectivity and

distance from a point source using LORETA currentreses and the Pearson

product correlation coefficient (PCC) as appliedégquential epochs of
time. The degrees of freedom ranged from 29 tm&¢hich a correlation

of 0.367 to 0.254 is necessary for P < .05. Thadysis is a cross-frequency
correlation as well as a cross-region of interestetation. The time series

analyses of cross-channel and cross-frequency eoteland phase
synchrony is discussed in sections 25 to 39.

Below
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Fig. 6 - lllustration of a cortico-cortical connext model. Top is the organization of
intra-cortical connections according to Schulz Bngitenberg (2002). A = gray matter
intra-cortical connections, B = ‘U’ shaped whitetteaconnections and C = long
distance white matter connections. Bottom is amgdar contour map of source
correlations in which the horizontal bands of irgieg and decreasing source
correlations correspond to the different corticetical connection systems as described
in the top of the figure. From Thatcher et al, @00

6- What is Coherence?

Coherence is a measure of the amount of phasditgtabiphase jitter
between two different time series. Coherence coassomething
analogous to the “Pearson product-moment correfatthe phase angles
between two signals. When the phase differencedsst two signals is
constant than coherence = 1, when the phase diffefgetween signals is
random then coherence = 0. It is possible forethhebe a constant phase
angle difference at two different frequencies.tha later case the
terminology is cross-frequency coherence or bi-spkcoherence or n:m
phase synchrony (Schack et al, 2002; 2005). Ifrteasures are within the
same frequency band, then the terminology is sirfggherence” which
assumes auto-frequency coherence. Coherencehsmetically analogous



to a Pearson product-moment correlation and thexédoamplitude
normalized, however, coherence is a statistic aspldifferences and yields
a much finer measure of shared energy between rastf periodic signals
than can be achieved using the Pearson product-niarogelation
coefficient of amplitudes. In fact, coherencessential because the degree
of relationship or coupling between any two livisgstems cannot be fully
understood without knowledge of its frequency strcesover a relative long
period of time. Another advantage of Coherencenastioned previously,

Is its dependence on the consistency of the averagee difference between
two time series, where as the Pearson product-miocoerelation

coefficient is independent of phase differencdhe fine details of the
temporal relationship between coupled systems fisadiately and
sensitively revealed by coherence.

In this paper we will first describe the mathemmsbf the
autospectrum and power spectrum as they apply @ &fherence by using
simple hand calculator instructions so that onestap through the
mathematics and understand coherence and phavasitdevel (some of
the deeper mathematical detail is in the Appendi®e will step the reader
through simple examples that can be solved withralltalculator (scientific
calculator is recommended) to further illustratevlamherence is computed
and to demonstrate by simulation of EEG signalsreige. We will also
address the statistical properties of the powettsjm, coherence and phase
synchrony using calibration sine waves and the igFdrder to illustrate the
nature of coherence and phase angle (i.e., ph#iseedice and direction)
and finally, a statistical standard by which thgnsil-to-noise ratio and
degrees of freedom in the computation of EEG colesrare measured
using a hand calculator and by computer simulaticthe EEG. Computer
signal generators not only verify but most impotifaalso explore a rich
universe of coherence and phase angles with a frsenclicks (download
a free EEG simulator atttp://www.appliedneuroscience.cand download
the NeuroGuide demo program. Click File > Operign&l Generation to
simulate the EEG, including “Spindles” and interrsjbe intervals, etc.
Another free EEG simulation program is at:
http://www.besa.de/index_home.htra third free EEG simulation program
(purchase of MatLab required) is at:
http://www.sccn.ucsd.edu/eeglab/index.hémt a fourth simulation
program for the mathematics of the Fourier seges i
http://www.univie.ac.at/future.media/moe/galeriefier/fourier.html#fourie
;




Mathematical and statistical standardization of Ef6Gerence are
best understood using a hand held calculator avdlilg simulation of the
EEG.

Coherence arises from Joseph Fourier’'s 1805 fund&in@equality
where by the ratio of the cross-spectrum/produeubd-spectrum < 1.
Coherence is inherently a statistical estimateoapting or association
between two time series and is in essence thelaboreover trials or
repeated measures. As mentioned previously, theatrconcept is “phase
consistency”, i.e., when the phase relationshipiveen two time series is
constant over trials than coherence = 1.

7- How Does One Compute Coherence?

The first step in the calculation of the coherespectrum is to
describe the activity of each raw time-series aftequency domain by the
“auto-spectrum” which is a measure of the amoumn&rgy or “activity” at
different frequencies. The second step is to edenfhe “cross-spectrum”
which is the energy in a frequency band that isoimmon to the two
different raw data time-series. The third stefpisompute coherence
which is a normalization of the cross-spectrumhasratio of the auto-
spectra and cross-spectra. To summarize:

1- Compute the auto-spectra of channels X and ¥das the “atoms” of
the spectrum

2- Compute the cross-spectra of X and Y from tterhs” of the spectrum

3- Compute Coherence as the ratio of the autotspand cross-spectra

8- First Compute the auto-spectra of channels X ani based on the
“atoms” of the spectrum

Joseph Fourier in his thesis of 1805, benefitnagifalmost a century
of failed attempts, finally correctly showed thayaomplex time-series can
be decomposed into elemental “atoms” of individuadjuencies (sine and
cosine and linear operations). Fourier definedatltespectrum as the
amount of energy present at a specific frequenagbdle showed that the
autospectrum can be computed by multiplying eacht jpd the raw data by
a series of cosines, and independently again leyiessof sines, for the
frequency of interest. The average product of#vedata and cosine is
known as the cosine coefficient of the finite deterFourier transform, and
that for the sine and the raw data as a sine cosffi The relative
contributions of each frequency are expressed éseticosine and sine
(finite discrete Fourier) coefficients. The cosare sine coefficients



constitute the basis for all spectrum calculatiomduding the cross-
spectrum and coherence. Tick (1967) referreddcihe and cosine
coefficients as the “atoms” of spectrum analyskor a real sequence;{x
=0, ...., N-1} and\tt = the sample interval and f = frequency, then the
cosine and sine transforms are:

Eq.3 - The cosine coefficient =a(n) = At X (i) cos27fiAt
i=1

Eq.4 - The sine coefficient =b(n) = Ati X (i) sin27ftAt

A numerical example of the computation of the kenifransform is
shown in Table Il. The data is from Walter (19@®)ich served as a
numeric calibration and tutorial of EEG coherentée 1960s (see also
Jenkens and Watts, 1969 and Orr and Naitoh, 1978)s 1960s dataset is
still useful for explaining the concept of spectrahlysis as it applies to the
Electroencephalogram as QEEG was developed indb@'d and used at
UCLA and other universities giving rise to a largenber of publications
and the development of the BMDP Biomedical sta@dtprograms in the
1960s. The Walter (1969) data are 8 digital fpamts that were sampled
at 100 millisecond intervals (0.1 sec. intervalghvd separate
measurements (i.e., repetitions). The highesu&raqy resolution of this
data set is defined as 1/T = 1/0.8 sec. = 1.25H® highest discernable
frequency is 5 Hz (Nyquist limit) and thus the date bounded by 1.25 Hz
and 5 Hz, with values at every 1.25 Hz. We wik tise same historic
examples that pioneers used in the early developoieuantitative EEG
used in the 1950s - 1970s. The analyses belowasm®d on the careful step
by step evaluation of the Walter (1969) paper by @+.C. and Naitoh, P.
in 1967 which we follow.

The Walter (1969) cosine and sine coefficientsabl€ Il will be used
for the purpose of this discussion. The focus lgllon the use of a hand
calculator to compute coherence using the valudslote 1l and not on the
computation of the coefficients themselée$he reader is encouraged to

2 A Matlab computation of the sine and cosine cegffits using the raw data in Table Il produced the
following coefficients 2.5355- 2.9497i, 17.00000Q00i, -4.5355- 6.9497i using the complex notato+
ib. Even though different coefficients may beduroed than those published (Walter (1969; Orr and
Naitoh, 1976) let us continue to use the Walte6@)oefficients because the procedures to compute
coherence and not the coefficients are what aigt@fest in this paper. We will produce an updasdade
and set of numbers in a future revision.



either write intermediate values on a piece of pap&o store temporary
variable values using the memory keys of their haaddulator.

Table I
Example of Raw Data

Table of Channel X Table of Channel Y

Observation Observation

(seconds) 0.0 0.1 0.2 03 005 0.6 0.7] (seconds) 00 01 02 03 0@5 06 0.7
Record 1 3 5 6 2 4 -14 1 | Recordl -1 4 -2 2 0 02 -1
Record 2 1 1 -4 5 1 -51 4 |Record? 4 3 9 2 7 65 1
Record3 -1 7 3 0 2 11 -2 |Record3 -1 9 -4 -1 2 41 -5

Hand Calculator Example of Cosine and Sine Coeffients

Channel X h&nel Y
Cosine Coefficients a(x) Cosine Coefficiertigy)

f (Hz) 1.25 25 3.75 5.0 | f (Hz) 1.25 25 3.75 5.0
Record 1 0.634 4.25 -1.134 1.25 |Record1l -0.073 -0.25 -0.427 79%.
Record 2 0.634 2.0 -1.134 -0.875| Record 2  -0.398 6.5 -1.106 .28
Record 3 -0.043 1.75 -1.457 375 | Record3 -0.368 1.5 -0.934 .35
Average  0.408 2.667 -1.242 .16/ | Average -0.272 2583 -0.822 12Bb

Channel X h&nel Y

Sine Coefficients b(x) Sine Coefficierb(y)

f (Hz) 1.25 25 3.75 5.0 | f (H2) 1.25 25 3.75 5.0
Record1 0.737 0.25 1.737 0.000 | Record 1 0.237 0.75 2.237 00m
Record 2  0.487 -3.25 1.987 0.000| Record2 -0.043 0.00 1.457 00D
Record 3 0.414 2.5 2.414 0.000 | Record 3 0.641 4.75 2.341 O(0m
Average  0.546 -1.67 2.048 .00D | Average 0.345 1.833 2.012 QDO

Autospectrum X Autospeson Y
f (Hz) 1.25 25 3.75 5.0 | f (H2) 1.25 25 3.75 5.0
Record1 0.945 18.125 4.303 56B | Record 1 0.061 0.625 3.186 561
Record 2 0.639 14563 5.234 76®. | Record 2 0.159 42.25 3.342 568
Record 3 0.173 9.313 7.95 1.891 | Record 3 1.036 24.813 6.353 918
Average  0.586 14.00 5.838 .40V | Average 0419 22561 496 33D




The frequency analysis of a time series of finiteation “at” a chosen
frequency does not really show the activity prdgisé that frequency alone.
The spectral estimate reflects the activities withifrequency band whose
width is approximately 1/T around the chosen fregqye For example, the
activity “at” 1.25 Hz in the example in Table lljpesents in fact the
activities from 0.625 Hz to 1.875 Hz (or equivalgnl.25 Hz £ 0.625 Hz).

The autospectrum is a “real” valued measure oatheunt of activity
present at a specific frequency band. The autdspees computed by
multiplying the raw data by the cosine, and indelegly, by the sine for
the frequency of interest in a specific channdie @verage product of the
raw-data and cosine is referred to as the “cosiedficient” of the finite
discrete Fourier transform, and the average proafuitte sine and the raw-
data is referred to as the sine coefficient. Let &hd a(x) represent the
number of observed values for a time series *(8,ftequency of interest,
and a cosine coefficient n, then the summationegessary “smoothing” is
defined as:

Eq. 5- The average cosine coefficientatn) = %i X(i)co{%}

Eqg.6 - The average sine coefficient = b(n) = %z X(i)sin(%)
i=1

Each frequency component has a sine and cosinerimatelue. The

actual autospectrum value is arrived at by squanyadding the respective
sine and cosine coefficients for each time serigse power spectral value
for any frequency intensity is:

Eq.7-  F(x)=@Xx) + 5 (x),

That is, the power spectrum is the sum of the sguaf the sine and cosine
coefficients at frequency f as shown in Table II.

9- Second Compute the cross-spectra of X and Y frothe “atoms” of
the spectrum

To calculate the cross-spectrum, it is necessacpigider the “in-
phase” and “out-of-phase” components of the sigmathannels X and Y.
The former is referred to as the co(incident) speator cospectrum and the



latter is referred to as the guadrature spectruquadspectrum. The “in-
phase” component is computed by considering the caefficients as well
as the cosine coefficients of X and Y. The “oupbhse” component
concerns relating the cosine coefficient of timeeseX to the sine
coefficient of times series Y, and similarly thaesicoefficient of times
series X to the cosine coefficient of time series Y

A simple hand calculator test will show that theadspectrum = O for
any two in-phase sine waves (i.e., phase differen@e This simple test is
important when eliminating or separating the “vouoonduction”
contribution to the cross-spectra generated bypthm network or brain
“Connectivity” aspects of EEG as discussed in sec?. For example, non-
volume conduction measures where there are staligtsignificant phase
differences of less than 1 degree have been pebli@ekhorn et al, 1988;
Barth, 2003). Long electrical phase differences’@o 3@ simply can not
be explained by volume conduction as a matter g$igl.

10- How to Compute the cospectrum and quadspectrum

Below is a hand calculator example of how to coraghé coherence
spectrum. Step 1 is to calculate the cospectrutrmgaadspectrum:
a(x) = cosine coefficient for the frequency (f) fdrannel X

b(x) = sine coefficient for the frequency (f) fdrannel X

u(y) = cosine coefficient for the frequency (f) fdrannel Y

v(y) = sine coefficient for the frequency (f) fdnannel Y

The cospectrum and quadspectrum then are defined as

Eg. 8 - Cospectrum (f) = a(x) u(y) + b(x) v(y)

Eq. 9 - Quadspectrum (f) = a(x) v(y) — b(x) u(y)

The cross-spectrupower is real valued and defined as:

Eg. 10 - () =\/(cospectrum(f)2 + quadspectrum( f)?)

Eq. 11- T ((@O)u(y) +bO)V(y))* +(@0)V(Y) = b(x)u(y))’



That is, the cross-spectrysower is the absolute value of the complex-

valued cross-spectrum. The cross-specipomer is a measure of

connectivity based on the total shared energy tweo locations at a
specific frequency and it is a mixture of in-phase out-of-phase activity

(i.e., local and distant). The cross-spectrum pasva real number because

a complex number times the complex conjugate eabnumber.
Coherenceis a normalization of the cross-spectral powedinding by the

autospectra or the in-phase component and, thetefoherence is
independent of autospectral amplitude or powenanieks from O to 1.

Table Il is an illustration of the computatiortitails of coherence based

on the FFT auto and cross-spectra in Table Il:

Table IlI

Hand Calculator Example
Cospectrum, Quaspectrum and Ensemble Smoothing

F (Hz) Cospectrum Quaspectrum

1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00
Record 1 0.128 -0.875 4.375 0.938 0.204 3.25 -1.795 0.000
Record 2 -0.272 13.00 4147 1.094-0.22 -21.125 0.541 0.000
Record 3 0.363 14.50 7.012 1.8910.108 4563 -1.156 0.000
Average 0.073 8.875 5.176 1.3070.031 -4.438 -0.803 0.000

Cospectrum (1.25 Hz) = 0.634(-0.073) + 0.737(0.230)128

Quadspectrum (1.25 Hz) = 0.634(0.237) — 0.737(&%).670.204

Cross-spectrum (1.25 Hz) = 0.128 + sq. root -109)2and

Cross-spectrum power (1.25 Hz) = (0.1280.204) 2 = 0.241

This computation is repeated for each frequencypmomant to yield the

complete cross-spectrum.

As mentioned previously in section 3, the crossestpim is the sum

of the in-phase potentials (i.e., cospectrum) arebd-phase potentials (i.e.,



guadspectrum). The in-phase component containgsnetonduction and
the synchronous activation of local neural genesato The out-of-phase
component contains the network or connectivity gbations from

locations distant to a given source. In other wptlde cospectrum = volume
conduction and the quadspectrum = non-volume cdiauwhich can be
separated and analyzed by independently evaluttehgospectrum and
guadspectrum. Figure 7 is an example of the diffees between the in-
phase and out-of-phase components of the crossrgpein a right
hemisphere hematoma patient. The cospectrum shigivsocal sources
and little distant zero phase lag relations. Thisdicative of a source near
to the surface of the scalp at P4 and C4. Thdspextrum shows high out-
of-phase power or network connections between E4fandistant left
hemisphere and especially F3 that are highly oyghafse. In general the
right parietal lobe is out of phase with respedhtspatially distant left
hemisphere.

Right Central {C4) and Parietal Lobe (P4) Hematoma

Cospectrum In-Phase Component Quadspectrum Out-of- Phase Component

Theta In Phase Power (Ul) Theta Cut of Phase Power (V)

90000
00000
eo0ce
e e

Fig. 7 — Left is the cospectral power or In-Phaseqr in all 171 electrode combinations
of the 10/20 system. Right is the quadspectralggaw Out-of-Phase relationships. P4
and C4 are near to the location of the right hehesp hematoma. P4 is out-of-phase
with a large number of locations, especially tfehemisphere (from NeuroGuide
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11- Third Compute Coherence as the ratio of the aotspectra and
Cross-spectra

Coherence is usually defined as:

|Cross — Spectrum( f)XY|2

Eqg. 12 - Coherence (f) = (Autospectrum( f )(X))(Autospectrum(  )(Y))

However, this standard mathematical definitionaierence hides some of
the essential statistical nature and structur@bémence. To illustrate the
fundamental statistics of coherence let us retwur simple algebraic
notation:

Eq. 13 -
Q- @(u(y) +bx)v(y))? + (3 @(x)v(y) =b(x)u(y)))*

Coherence (f) = S (a7 +b(x)%) 3 u(y)? +v(y)?)

Where N and the summation sign represents averagegfrequencies in
the raw spectrogram or averaging replications givan frequency or both.
The numerator and denominator of coherence alwefgssrto smoothed or
averaged values, and, when there are N replicatiohkfrequencies then
each coherence value has 2N degrees of freedorte thi if spectrum
estimates were used which were not smoothed oagedrover frequencies
nor over replications, then coherence = 1 (BenddtRiersol, 1980;
Benignus, 1968; Otnes and Enochson, 1972). Irrdodeompute
coherence, averaged cospectrum and quaspectruntreda@lues with
degrees of freedom > 2 and error bias = 1/N isl.use

The numerical example of coherence used the ag@@gpectrum
and quadspectrum across replications in TableHtdr example from Table
[l the coherence at 1.25 Hz is:

0.073 +0.037

) = 0.026
0.586(0.419)

Eq. 14 - Hand Calculator Coherence (1.25 Hz



This computation is repeated for each frequencypmorant to yield the
complete coherence spectrum, a typical plot of caiee is frequency on
the horizontal axis (abscissa) and coherence owdtireal axis (ordinate).
Coherence is sometimes defined and computed go#i@ve square-root
and this is referred to as “coherency”.

12- Some Statistical Properties of Coherence

How large should coherence values be before theye considered
reliable? The answer is it depends on the truerarite relationship and the
degrees of freedom used in the averaging compatatiequation 13. In
general the degrees of freedom increase as a saqpodref N (i.e., the
amount of smoothing) and the more the degreesetlbm the better (i.e.,
averaging across frequency and/or across repetiaotfsmoothing”). The
trade off is between frequency resolution and bdlig, the longer the
interval of time over which averaging occurs or drger the number of
repetitions then the greater are the degrees eflém. Short time intervals
of low frequencies by their nature have low degiddseedom. For this
reason the NeuroGuide uses the default of a 1 mgaunple, e.g., the theta
frequency band 4 — 7 Hz NeuroGuide EEG coherenca fominute sample
=7 (0.5 Hz bins) + 117 FFTs = 124 x 2 = 248 degdreedom. To test
the statistical properties of coherence selecttesheegments of simulated
EEG and systematically change the signal-to-n@se in the NeuroGuide
demo signal generator atvw.appliedneuroscience.comi\fter launching
the NeuroGuide demo click Open > Signal Generation.

13- How large should coherence be before it can begarded as
significantly larger than zero?

Low degrees of freedom always involve “Inflatiarf the true signal-
to-noise relationship between two channels wheaaadén product
correlation coefficient is computed. EEG coheeeiscno exception and
this explains why coherence is highly inflated witie® degrees of freedom
are low and the bandwidth is small. For exampigiré 8 shows the
inflation of coherence (y-axis) when a signal irr@mannel (4 Hz — 19 Hz
sine wave) is compared to random noise in a secbadnel with increasing
degrees of freedom (x-axis) and different bandvadtihe ideal is
coherence = 0.
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Figure 8 — Coherence (y-axis) vs. number of timmeggas (y-axis). Sample rate = 128
Hz. The five curves are for different band widtli®eries 1 = 4 Hz, series 2 = 6 Hz,
series 3 = 8 Hz, series 4 = 10 Hz and series 5 #zZ1Bandwidths. The wider the band
width the more stable and accurate is coherence.

The digital reality of low degrees of freedom usamg Hz bandwidth are
also shown in figure 8. The y-axis is coherexd®(). The x-axis are the
number of time samples at a sample rate of 128dtiga digital filter
(complex demodulation) to compute coherence. fiMeecurves represent
different bandwidths (4 Hz, 6 Hz, 8 Hz, 10 Hz & H2). The ideal
coherence value = 0 at infinity and series 5 wifl2dz band width is
approximately 9% at 128 time samples. Mathemadgicalherence inflation
is defined as:

Eg. 15 — Inflation of Coherence (IF) = coherentsignal (S) divided by
the coherence of white noise (N) = IF = S/N

The curves in Figure 8 show that after 1 secoravefaging the EEG
coherence inflation values ranged from 1 to OdkQL0%). Figure 8 also
shows that the wider the band width then the lattgemnumber of degrees of
freedom. The equation to compute the degreéeedom when using
complex demodulation is:

Eq. 16 - Df=2BT

Where B = bandwidth and T = time samples (OtneskEamathson, 1972 and
Appendix-B).



Bendat and Piersol (1980) as elaborated by Nunakz(&097) provide
another measure of the 95% interval for coherendehwh expressed as:

~ F@) _ L F)
Eq. 17 e SFOS

Where F(i) applies to the auto or cross spectmasitie or coherence. The
confidence interval depends on the error term mddfas the RMS error
(i.e., root mean square error). In general, tiherenay be estimated by:

Eq.18- e =—

14- Is there an inherent time limit for EEG Cohererce Biofeedback?

The answer is yes, because coherence is uniguediofeedback
because it depends upon averaging the phase amgibase differences.
The lower the variance or the more constant theglé#ferences (or the
greater the phase synchrony or phase locking)ttieehigher the coherence.
Similarly, as a property of statistics the grediterdegrees of freedom then
the less the statistical inflation of the real a@imee value. Based on
operant conditioning studies the feedback inteovdéedback delay is
crucial for the ability of the brain to link togethtwo past events. Too short
an interval or too long an interval reduces theliilood of a person making
a “connection” between the biofeedback display/soamsignal and the
brain’s electrical state at a previous momentrireti In the case of
amplitude and phase difference the calculation doéslepend upon an
average as it does when computing coherence. tThhsrence EEG
biofeedback inherently requires a longer feedbat&ydthan does the nearly
instantaneous computations of power, ratios of ppwedative power,
amplitude, amplitude asymmetries, phase differéocehase angle), etc.
To the best of our knowledge the minimum amounhfdétion that leads to
the greatest efficacy of biofeedback training udtfiffs coherence has not
yet been published. The minimal interval is action of at least two
factors: 1- the stability of the signal being featk, i.e., a noisy and jumpy
signal has no connection formation value and, 24rterval of time
between the brain event and the feedback. Bothrareal and seconds and
milliseconds are the domain. The interval fromo @bout 80 — 100
milliseconds is a neurophysiological “blank perialliring the integration
interval where simultaneity is resolved as a sifigleanta” or “perceptual



frame” of consciousness (Thatcher and John, 1%, 2005). At about
300 — 500 msec the match miss-match resolutioxméetation and received
inputs is completed. Associations and connectiotisne occur from about
200 msec to minutes of time. Thus, operant ¢amdng of EEG
biofeedback is likely to work best when the intémktime between an
“EEG Event” is greater than 100 msec and aroun@® keconds, with a
operating curve yet to be produced. When accunaesurements are made
of the optimal interval of time between a brainmvend the feedback signal
and not active stimulation, then one can expedt30@ msec to 1 sec would
be a good interval of time for associations to ow=ing operant
conditioning EEG biofeedback. For active stimaatEEG biofeedback
then phase reset can occur and many other phendherean easily be
measured can occur. However, modern EEG sciasily dandles event
related potentials (ERPS) if one knows the instatime when the stimulus
was delivered or the instant in time when the moasinof the subject
occurred. Spontaneous EEG and ERPs are relatbdtithe background
EEG is the “mother” of the ERP (electrical field)aagiven moment of time.
The powerful and rhythmic background EEG are threraation of millions
of excitatory EPSPs oscillating in loops but ontinfy on the rising phase of
the oscillation. This results in a “quantizatiaf’neuron excitability as
reflected by the rhythms of the EEG. The ideagpfdntization” of neural
action potentials time locked to the rising phafsthe EEG is old and is well
supported by recent evidence (Buszaki, 2006).

15- What is Phase Difference?

Coherence and phase difference (measured in dregeBnked by
the fact that the average temporal consistenclgephase difference
between two EEG time series (i.e., phase synchngsrgiyectly proportional
to coherence. For example, when coherence is utmapvith a reasonable
number of degrees of freedom (or smoothing) therptiase difference
between the two time-series becomes meaningfulusecde confidence
interval of phase difference is a function of thegmitude of the coherence
and the degrees of freedom. If the phase angédom between two time
series then coherence = 0. Another way to viewelationship between
phase consistency (phase synchrony) and coherebheceaonsider that if
Coherence = 1, then once the phase angle relatiomown the variance in
one channel can be completely accounted for byptier. The phase
relation is also critical in understanding whiamé-series lags or leads the
other or, in other words the direction and magretatithe difference.



However, when using circular statistics the meaasphangle or phase
difference is relative to an arbitrary referencetarting point which is
difficult to define with spontaneous EEG. Spomtaus EEG is perfectly
useful because subjects are alert and holding #lgessstill or with no
motion as a reference and the magnitude and direofia shift in phase
angle is all that is relevant (see section 15).

The phase difference is defined as:

Eg.19-  Phase difference (f) = Arctipneothedquadspectrum(f))
(Smoothed cospectrum( f))

In the numerical example in Table II,
Phase difference (or angle at 1.25 Hz) = ArctaBD@.073 = 22.7

Two oscillators arérequency locked when the first derivative of the
phase difference has a stable periodic orbit efirere is a difference in
phase between the two oscillators. Two oscilkasweentrained when they
are frequency locked in a 1:1 fashion with no pldiference. Two
oscillators are phase locked where there is aestgtidse difference that is
not 1:1 (e.g., 2:3). Two oscillators achronized when they are phase
locked independent of the absolute value of thes@hi#ference, e.g., when
the T derivative of the time series of phas®. Synchronization is1-phase
when the phase difference = 0 amdl-of-phase is when the phase difference
# 0. Two oscillators are said to be synchronizeahinphase when the
phase difference = 180 Frequency locking without phase locking is adlle
phase trapping. The relationship between all of these defimsias depicted
in figure 9.



frequency locking
In-phase
entrainment synchronization phase locking
(1:1 frequency locking)
anfl-phase

Fig. 9 — Various degrees and types of locking afl@dors. From Izhikevich
and Kuramoto, 2005).

16 — What is Phase Resetting?

Coupled oscillators often drift apart in their pbaslationship and a
synchronizing pulse can shift the phase of oneotit bf the oscillations so
that they are again in phase or phase locked feriad of time (Pikovsky et
al, 2003). Synchrony is defined as “an adjustna¢mhythms of self-
sustaining oscillators due to their weak interawioPikovsky et al, 2003).
Phase reset marks the onset of phase lockingseRbeking and the term
“entrainment” are synonymous. The amount of phesetting per unit
time is depicted by phase reset curves or PRCw fimase — old phase).
Positive values of the PRC correspond to phaseeathlances, negative
values correspond to phase angle reductions. \&@aking typically
exhibits a slow and smooth PRC whereas strong caupktween
oscillators often results in abrupt or a discortumsPRC. A useful method
to measure phase resetting is by computing thiedi@svative of the time
series of phase difference on the y-axis and tim#he x-axis. A significant
positive or negative first derivative of the timerigs of phase differences
represents the magnitude of phase resetting (dondalerivative of the
phase shift is also useful in this computationage reset is related to onset
of phase synchrony or phase locking and the pefogar zero %
derivatives in time is an example of a homeostatit stable dynamical
system (Pikovsky et al, 2003; John, 2005). Tworeggeng properties of



phase reset are that minimal energy is requireédget phase between
weakly coupled oscillators and phase reset ocadlespendent of amplitude.
In weakly coupled chaotic systems amplitude cay vandomly while
phase locking is stable.

Phase reset is defined as a significant positiven@gative first
derivative of the time series of phase differeneaveen two channels, i.e.,
d(¢, — ¢, _/t >0 or < 0. Phase locked or phase synchrongfised as that

period of time where there is a stable near zerst fierivative of the
instantaneous phase difference betweeh d@_/t= 0. A high coherence

value is related to extended periods of phase mgcki A significant positive
first derivative of the time series of coherencerkaathe onset of phase
locking and a significant negative first derivatieé the time series of
coherence marks the onset of phase dispersionaovieterval of time. The
significance level can be determined by computhmg rneans and standard
deviations of the first derivative for each timeisg and then computing a Z

score for each time point with alpha at P < .Oim% where u = mean

and x = the instantaneous first derivative at t 8= standard deviation.
For example, depending on the method of computatialues near zero st.
dev. or < 1 st. dev may define the state of “Phamsking”. Values > 2 st.
dev. may define the state of “Phase Transition"Rirase Reset” (the alpha
threshold is a matter of observation and test).

Figure ten illustrates the concept of phase res€bherence is a
measure of phase consistency or phase clusterinth@runit circle as
measured by the length of the unit vector r. Tlustration in figure 10
shows that the resultant vector # r» and therefore coherence when
averaged over time is constant even though theréea shift in the phase



EEG Phase Reset as a Phase Transition in the Tmme Domain
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Fig. 10 — lllustrations of phase reset. Left is thnit circle in which there is a clusteripng

of phase angleand thus high coherence as measured by the lefgke unit vector r
The vector rl1 = 450ccurs first in time and the vector r2 ="Hhd 135 occurs later i
time. The transition is between time point 4 @hdvhere the * derivative is 3
maximum. The right displays are a time serieshefapproximated®iderivative of the
instantaneous phase differences for the time s&ris t;, t» at mean phase angle =%4

and &,t,17, ts at mean phase angle ="10 Phase reset is defined as a significant negati

or positive £ derivative (y’ < 0 or y’ > 0). The®1derivative near zero is when there

phase locking or phase stability and little chaoger time. The sign or direction of

5

is

phase reset is arbitrary since two oscillating &veare being brought into phase

synchrony and represent a stable state as mealByreEG coherence independent
direction. The clustering of stable phase refatiops over long periods of time is mg

of
re

common than are the phase transitions. The phassitions are time markers of the
thalamo-cortical-limbic-reticular circuits of thedn (John, 2005; Thatcher and John,

1977).

angle (i.e., phase difference) that occurs durimggsummation and average
of the computation of coherence. This illustrates advantage of phase
differences which are “instantaneous” and not dissiizal average like
coherence and a correlation coefficient. Details domputing complex

demodulation and instantaneous spectra are in Ajppoéh

As mentioned previously, an important propertypbése reset is that



it requires essentially zero energy to change tres@ relationship between
coupled oscillators and by this process rapidiat@esynchronized clusters
of neural activity. In addition to phase resetheiit any change in
frequency or amplitude of the EEG spectrum is thatan also be
independent of phase history. That is, phase ms®irs independent of
magnitude and direction of the phase differencedkisted before the onset
of the reset pulse (Kazantsev et al, 2004). Whatmportant in the
computation of the first derivative of the timeiserof phase is the rate of
change of phase over time and not the absolute itadgrof phase.

Figure 11 shows the relationship between phagerdifces using Cz
as a reference and phase reset as measured by deevitive of the phase
difference time series.

Example of Phase Reset. Top is phase {Deg) with Cz as the reference and the bottom
Is the 19 derivalive of phase {Deg/sec) or phase

Phase Reset
1= Dervative
Of Phase

Fig. 11 — Example of phase difference time serigis @z as the reference (Top) and the
1% derivative of the phase difference time seriestt@n) or phase reset. Analyses were
produced using the NeuroGuide Lexicor demo from tlégownload at
www.appliedneuroscience.com

Figure 12 shows examples of phase synchrony orgdbaking when
the first derivative of the phase difference tirmeess~ 0 and phase reset



when the 1 derivative of the phase difference time sefi€s Global phase

reset is defined as > 90% of the channels exh@gimultaneous phase reset
and local phase reset is defined as 1 or a fewdliaexhibiting phase reset.

The intervals of time between phase reset are ggenbphase synchrony.

Phase Synchrony when the 19 derivafive = 0, Phase Reset when the 15t derivative ¥ 0

Phase Synchiony Glohal Phase Reset Phase Synchiony Local Phase Reset
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Figure 12 shows examples of phase synchrony oregdbaking when the first derivative
of the phase difference time serie® and phase reset when ttfiederivative of the

phase difference time serig9. Global phase reset is defined as > 90% othla@nels
exhibiting simultaneous phase reset and local press is defined as 1 or a few

channels exhibiting phase reset. The intervatsyd# between phase reset are periods
phase synchrony also called “phase locking”. Asedywere produced using the
NeuroGuide Lexicor demo from the downloadhvaiw.appliedneuroscience.com

Figure 13 shows how to quantify phase reseti§secting its two
fundamental components, i.e., phase shift followeg@ghase locking.



Phase Reset Metrics

2 Phase Synchrony Interval {SI) =t,—t;
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Fig. 13- Diagram of phase reset metrics. Pha#e (§15) onset was defined at the time point when a
significant ' derivative occurred> 5° /centisecond), phase shift duration (SD) was eeffias the time
from onset to offset of the phase shift and thespteynchrony interval (Sl) was defined as the uatleof
time between the onset of a phase shift and thetarfsa subsequent phase shift. Phase reset €PR) i
composed of two events: 1- a phase shift and Zriag of synchrony following the phase shift whére
1* derivative~ 0 or PR = SD + SI. (from Thatcher et al, 20082)821f)

17- How large should coherence be before Phase @ifénce can be
regarded as stable?

As mentioned previously, the confidence interoalthe estimation of
the average phase angle between two time senielied to the magnitude
of coherence. When coherence is near unity thewscillators are
synchronized and phase and frequency locked. rbans that when
coherence is too low, e.g., < 0.2, then the esérothe average phase
angle may not be stable and phase relationshigd beunon-linear and not
synchronized or phase locked. An example of d&fiee phase angle
using the NeuroGuide signal generation prograrhasve in figure 13:



10 uV Signal + 30 degree Phase Shift & No Noise

Teow | ) w0 gon
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Fig. 13 shows an example of two 10 uV sine waveéh thie second sine wave shifted &
30 degrees with increasing amounts of noise ada#tetsignal in one channel (signal-
to-noise ratio). The data is 60 seconds samplé@&Hz.(from Thatcher et al, 2004).
Analyses were produced using the NeuroGuide Lexdeano from the download at
www.appliedneuroscience.com.
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.., Goherence and Phase Delay (30 deg) — Linked Ear Reference
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Fig— 14. Top is coherence (y-axis) vs signahoise ratio (x-axis). Bottom is phase
angle on the y-axis and signal-to-noise ratio axtaxis. Phase locking is minimal or
absent when coherence is less than approximalgr@0%.

Figure 14 (from Thatcher et al, 2004) shows inaedagriability of
EEG phase angle or difference as noise is systeafigtadded to the 30
degree shifted sine wave. Note that non-lineaadynal processes are
suggested by the fact that the mean = 30 degrees wdherence < 0.2.
Chaotic dynamics and reproducible correlationsoéten embedded in
similar time data.
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Figure 15 — The x-axis are different ranges of cehee (x100). The y-axis is the
standard deviation of coherence (blue circles)@rake angles (pink squares). The
dashed vertical line shows the level of cohere@0&4 or 0.2) when the variance of the
phase angle becomes very high. High varianceeoplfase angle means that there is
minimal or no phase locking.

Figure 15 (from Thatcher et al, 2004) shows thaEBherence
linearly decreases as a function of the signaletisenratio. It can be seen
that phase angles even with 248 degrees of fre@denmstable and poorly
estimated as coherence decreases. EEG cohetdh2eoaless is used as a
cut-off for accepting phase as a valid and stabeal measure. The
Instability of a non-linear system may be presedduse the mean phase
angle = 30 degrees when coherence is less thasd@ Figure 14.

The test signals were computed using the Neurasighal
generation program and by systematically increagiegamount of white
“noise” added to one of the channels used to coenpatherence and phase
angle. In general, as the value of coherence dsesebelow approximately
0.2 or 20% (i.e., coherence x100) then phase aagéesxtremely variable
and unstable even using 248 degrees of freedom.



The calculations exceed what is possible usingral ineld calculator,
however, computer simulations can produce resulishnfaster than a hand
calculator. The understanding of coherence andepban be explored by
any one who downloads the free NeuroGuide demo at:
www.appliedneuroscience.cond tests coherence and phase for
themselves.

18- Why the average reference and Laplacian fail tproduce valid
coherence and phase measures.

It is easy to understand why coherence is inwahdn using an
average reference since the summation of signais &ll channels is
“subtracted” or ‘added’ to the electrical potergia¢corded at each
electrode. Figure 16 below shows the results @Btierage reference where
noise and signal from each channel is incorporatedall of the channels
by being “subtracted” from the electrical potentiatorded from each
channel. Thus, signals and noise are mixed anedcaidthe recordings
from each channel making coherence and phaseeahffes invalid. A
similar situation prevails with source derivatiantioe Laplacian reference
(Figure 17) since spatially weighted signals andexfrom other channels
are averaged and subtracted from the electricahpiat recorded from each
electrode site. Coherence when using the aveedgence or source
derivation is especially sensitive to the presesfaatifact or noise since the
artifact will be mixed with and added to all chalsne

Figure 16 are the results of the computation ocGEEherence and
EEG phase differences using the average referefGedinulation. The y-
axis in figure 16 (top) is coherence and the x-&xitbe signal-to-noise ratio
(S/N). The y-axis in figure 16 (bottom) is phakskerence (degrees) and
the x-axis is the same signal-to-noise ratio (2IMin figure 14. It can be
seen in Figure 16 that coherence is extremely bigi@nd does not decrease
as a linear function of signal-to-noise ratio.cdn also be seen in Figure 16
that EEG phase differences never approximate 3feds@nd are extremely
variable at all levels of noise.
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Fig— 16. Top is coherence (y-axis) vs signatise ratio (xaxis). Coherence drops
Rapidly and is invalid. Bottom is phase anglelmy-axis and signal-to-noise ratio on
the x-axis. Phase locking is minimal or absent amstable throughout the entire
simulation and fails to exhibit the 30 degree phdifference.

Figure 17 are the results of the computation of E&fzerence and
EEG phase differences using the Laplacian referefge simulation. The
y-axis in figure 17 (top) is coherence and the is@&xthe signal-to-noise
ratio (S/N). The y-axis in figure 17 (bottom)pbase difference (degrees)
and the x-axis is the same signal-to-noise ratiN)&s in figure 14. It can
be seen in Figure 17 that coherence is extremeigihia and does not
decrease as a linear function of signal-to-noitie.ralt can also be seen in
Figure 17 that EEG phase differences are invalreever approximate 30
degrees with high variance at all levels of noise.



Coherence — Current Source Density
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Fig—17. Top is coherence (y-axis) vs signaftdise ratio (x-axis). Cohence drops of
Rapidly and is invalid. Bottom is phase anglelmy-axis and signal-to-noise ratio on
the x-axis. Phase locking is minimal or absent amstable throughout the entire

simulation and fails to exhibit the 30 degree phdifference.

The results of these analyses are consistenttiwoge by
Rappelsberger, 1989 who emphasized the value digityaf using a
single reference and linked ears in estimatingriagnitude of shared or
coupled activity between two scalp electrodes.e Ui$e of re-montage
methods such as the average reference and Lapkmiace derivation are
useful in helping to determine the location of soeirces of EEG of different
amplitudes at different locations. However, th&utes of this study which
again confirm the findings of Rappelsberger anddéret, 1988
and Rappelsberger, 1989 which showed that coheremoealid when using
either an average reference or the Laplacian sa&ceation. This same
conclusion was also demonstrated by Korzeniewskal, (2003).

19- What is “Inflation” of Coherence (and correlation)?



Coherence inflation is defined as any value ofecehce (x) greater
than zero when coherence (or correlation) is coetusing pure Gaussian
noise in one of the two channels and a pure sine\wathe other channel.

Eq. 20- Coherence Inflatioh x > 0

This is the error term when one of the channegtaire Gaussian noise and
the second channel is signal. Any value of calee> 0 is due to error
attributable to low degrees of freedom, inadeqeafeal resolution or too
short of measurement interval, or improper samgiesrwithin that interval,
etc.

Figure 18 below shows an example of a 5 Hz 10uMsimee in one
channel and 100 uV (p-p) gaussian noise in thengecbannel. The power
spectrum of the two channels is shown in the upgét panel. Figure 18 is
just one example of the analyses performed by g dGuide Signal
Generator that directly test EEG simulated EEG e ctra.
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Flgure 18. Screen capture of the NeuroGuide sgeaératlon program.




Top trace is a5 Hz 10 uV sine wave + 0 noise hArdbttom trace is the
mixture of a 5 Hz 10 uV sine wave + 100 uV Gaussiaise.

20- What are the limits of EEG Correlation, Coherere and Phase
Biofeedback

As explained above, correlation and coherencenegjaveraging of
time series data points in order to converge ta@mrate estimate of shared
activity between two time series. This means toatelation and
coherence, unlike absolute power, are not instaotamand always require
time to compute. The most important factors EGEcorrelation and
coherence biofeedback are: 1- The band width, @y8arate and , 3-
Interval of time over which Averaging occurs.

Band width is directly related to the number ofjides of freedom.
The wider the band width, the larger the numbetegfrees of freedom.
However, with increased band width then theredsiced frequency
resolution. In general, the standard band widfHSEG which are adequate
such as theta (4 — 7.5 Hz), Alpha (8 — 12 Hz)aR#&R.5 — 22 Hz) and
Gamma (25 — 30 Hz), etc. With narrow bandwidtbsgxample 0.5 Hz or
1 Hz then coherence will equal unity unless theeesafficient degrees of
freedom to resolve true “signals” in the brain, evhin the case of the
human scalp EEG a 1,000 Hz sample rate is moreatiaguate.

Figure 19 below shows the results of tests usixgumes of signal
and noise as in Figure 11 in which mean coherenti®iY — Axis as a
function of sample rate (i.e., 512 Hz top left, 26p right, 128 bottom left
& 64 Hz bottom right). This figure will be replag with a series of more
clearly labeled figures in the next version of ghagper. For the moment,
accept the fact that the amount of time for averggin the X - axis (125
msec., 250 msec., 500 msec. and 1,000 msec. rgsldtger coherence
values, i.e., lower coherence inflation. Thig tegolved computing
coherence between one channel of pure sine waOasp-p) at different
frequencies (theta, alpha, beta & gamma) and angedwannel with pure
Gaussian noise (also 10 uV p-p). It can be sesmrthe most important
factor in determining coherence “Inflation” is tleagth of time for
averaging. 1,000 msec. produces coherence @01D%) inflation.
Inflation is defined above as any value > 0 wheregbaussian noise is in
one of the channels. 500 msec produces cohendffetigon = 0.2 (or 20%)
inflation while 250 msec produces coherence irdgtatr 0.3 to 0.4 and 125
msec = 0.5 to 0.6 inflation. The coherence tidfais independent of band
width, frequency and sample rate. The only a@itfactor is the interval of



time over which the average is computed, the lotigeinterval the lower
the inflation.

The results of these analyses are that a mininfuarb00 millisecond
difference is required when using EEG biofeedbaadbrder to compute an
accurate estimate of coherence or coupling betwweerime series. With a
500 millisecond average then the amount of inflateorelative low (e.g.,
0.2 or 20%) and as long as the same interval & tiraveraging is used
with a normative database, then the Z scores btirea coherence will be
valid and accurate. As seen in Fig. 19 a sangtéeaf 1,000 produces even
lower inflation, however, a 1 second differencenssn a brain event and
the feedback signal may be too long for connedomation in a
biofeedback setting.
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Figure 19. Mean coherence (y-axis) and the integravindow size in
milliseconds (x-axis). Top left is sample raté 22 Hz, top right sample
rate = 256 Hz, bottom left sample rate = 128 Hz lamitbm left sample rate
= 64 Hz. The amount of averaging from 125 mse&,®0 msec is the
critical variable in minimizing “inflation” and ndhe sample rate.




Figure 20 below is the same as figure 19, butainstthe standard
deviations. A 500 msec. averaging delay = 0.15dsted deviation while
1,000 msec = 0.1 standard deviation.  This &glrows that the choice of
a 500 millisecond integration delay yields a reatdyn stable estimate of
coherence when using EEG biofeedback but thatehioitervals, such as
125 msec or 250 msec produce high inflation antl ktgndard deviations
and will not provide a valid “feedback” signal atidis less averaging will
likely reduce neurotherapy efficacy.
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Figure 20. Standard deviations of coherence (g)ad the integration
window size in milliseconds (x-axis). Top leftsaample rate = 512Hz, top
right sample rate = 256 Hz, bottom left sample ral®8 Hz and bottom le;
sample rate = 64 Hz.
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EEG phase is not the same as coherence andhbiecaomputed
instantaneously without averaging. Phase resgeswithout averaging
provide a detailed picture of the phase stabiléfneen coupled oscillators.



Nonetheless, “instantaneous” phase is variablatas@dvisable to average
the phase angles over intervals of time if gresti#ility is required
especially when using Z score biofeedback.

20A - 19 Channel EEG Biofeedback

This use of the EEG changed dramatically in theD$98hen computers
were used to modify the EEG thru biofeedback, reteto today as
Neurofeedback (NF). Studies by Fox and Rudelb689Kamiya (1971) and
Sterman (1973) were a dramatic departure from ldesical use of conventional
visual EEG and QEEG in that for the first time @ians could consider treating a
disorder such as epilepsy or attention deficit discs and other mental disorders
by using operant conditioning methods to modify Bi&G itself. Thus, QEEG
and EEG Biofeedback have a “parent-child” relatiopsn that EEG Biofeedback
necessarily uses computers and thus is a form &®that is focused on
treatment based on the science and knowledge g@hysological meaning and
genesis of the EEG itself. Ideally, as knowledgeud brain function and the
accuracy and resolution of the EEG increases, Bt&A Biofeedback should
change in lock step to better link symptoms andmamts to the brain and in this
manner treat the patient based on solid scien€e.the extent the EEG can be
linked to functional systems in the brain and tecfic mental disorders then EEG
Biofeedback could “move” the brain toward a he@ltlstate (i.e., “normalize” the
brain) (Thatcher 1998; 1999). Clearly, the clatiefficacy of EEG Biofeedback
is reliant on knowledge about the genesis of teetedencephalogram and specific
functions of the human brain. The parent-childtrenship and inter-
dependencies between QEEG and EEG Biofeedbackive &mday and represents
a bond that when broken results in reduced clireffadacy and general criticism
of the field of EEG biofeedback. The traditioaald logical relationship between
QEEG and NF is to use QEEG to assess and NF tdomead on a linkage
between the patient’s symptoms and complaints anctibnal systems in the
brain.  This parent/child linkage requires dalicompetence on the one hand
and technical competence with computers and the &ithe other hand.
Competence in both is essential and societies &1tBNR, SAN, ABEN, ECNS,
BCIA, AAPB and other organization are availablén&dp educate and test the
requisite qualifications and competence to use Biteedback. The parent/child
link is typically optimized by following three stepl- perform a careful and
thorough clinical interview and assessment of @gept’'s symptoms and
complaints (neuropsychological assessments amadise desirable), 2- conduct a
QEEG in order to link the patient’s symptoms anchptints to functional
systems in the brain as evidenced in fMRI, PET QBEG/MEG and, 3- devise a
EEG biofeedback protocol to address the de-reguatobserved in the QEEG



assessment that best match the patient’s symptoedisamplaints. This
approach reinforces the close bond between pa&EG) and child
(Neurofeedback) and allows for the objective eviatmaof the efficacy of
treatment in terms of both behavior and brain fiamct

Figure one illustrates a common modern quantitdikZ& analysis where
conventional EEG traces are viewed and examin#teatame time that
guantitative analyses are displayed so as to taaland extend the analytical
power of the EEG. Seamless integration of QEEGNawlofeedback involves
two basic steps: 1- visual examination of the EE&Bds and 2- Spectral analyses
of the EEG tracés Numerous studies have shown a relationshipdeivthe time
domain and frequency domain of an EEG time sendd ®RETA 3-dimensional
source analyses which provide 7 fnmaximal spatial resolution in real-time
(Pascual-Marqui et al, 1974; Gomez and Thatché€rl p(see footnote 6). There
is a verifiable correspondence between the timesef the EEG and the power
spectrum and LORETA 3-dimensional source localmrgtfor example, visual
cortex source localization of hemiretinal visuatnstlation, temporal lobe source
localization of auditory simulation, theta souroedlization in the hippocampus in
memory tasks, localization of theta in the anteciagulate gyrus in attention
tasks, linkage between depression and rostral arshbcingulate gyrus, efc. The
number of clinical QEEG studies cited in the Na&binibrary of Medicine attests
to the linkage between patient symptoms and funatisystems in the brain and
protocols for treatment are commonly guided by saigntific literature .

% Spectral analysis includes space and time seqs¢haeare transformed such as Joint-Time-Frequency
Analysis, FFT and all other methods that decomds@ energies at different frequencies in space and
time.



8 Al Rinbert ThatherDestoni
Eile fdt Meew LoBection Monfage dnsiyss Hepot  Stepftics WMindow  Heip

Conventional EEG

EG CLIMIC REPORTSADA TAVIM-MO- Do THLA

QEEG

St iy PR
L |
I -I'-“—_-_ » s Eves Clogid L - ’ Ad
i E:I:- 5 e kg s e ,A;"\.-\.M"«‘W ! Eyes Gipen h"\""-,-—""m b P |
o |Fres e kﬂagvkﬂrﬁr-n_ el w,-'”"“—"\ op At Tk et |'m}1\‘~r,\-¢"’ s "‘“-—"\Iﬁ-“'-""*.uﬁ_r
Ective Targk Difser
| . Mortssn ! . 3 = 1
."v“z—m FRLE bt S o AR e '-4'\!\._-“_1-.)\"' e 9 |L\n, Fanar e e
. % |
| A - ! s W |
b ol 2 N G s L Wi FRWRY 'L o
.u‘t’g’!wj Fast AN B e M s A N A :. WV Wit Ik e
[ et | exee O AR NS e p g St Bt (ER TR SRR LA BN
: L Beta Spindie |
e ar ity ,«, | F 1
mETE | < W AWM Wl g snsiine '“‘11“ et o 4
|[rerast : e =
2037 pair A | N T vt Hip Waves e
e A ‘:, i *‘r\__hw,.ea.g,, -"l“-..a»-\.-'\,\.r iy W'w,-».,.m e B Pl e T JHh
LERE . S Ao |f A A A& s i 5 A [ LY
o || NN PN Ml e S ergenaes .““- i e L ¢
k! [Tyt Penymebeezaten
b T "'“*,W“r A St A e Hotihas fymaney | e i
Tzn'ég] K, -'-le“ -n.i"L-Y A ,-‘.-’-\«. : ’ I' e, % | » 0 =
Hom E s :Iﬁw .,.-'-.l' Yo pad . Mo E:;:p-—-m [\..—«_wn.,‘r el ety
FILE m\_,\..'wf\u u_,_l,m..'fvu._._.;-\.v.ﬁ_r\.f-\.-uﬂﬁ_,«_}""\m.» E Comples [&«,HM,-\J"\»._:-.l-‘l‘n.\,._.r\.- 5 2 ] o Azaca Posar
|
PELE R ) e Lt L Ee::-r-k i—_.nl_m‘,l‘_ VR e
wr Mavpmant
THE LA made™ L s W m e Mt o MG R R L R [
. \ Ursgeciied Amfact |
rese ety A e oo et ety bt
- e
R PR U, TRV S W e \.H__!Jﬂwﬂkd die B T T, | ""
i A
T bty e, \r\,?"‘“'w—.._.f- .-\-\.""\f‘ Msr \;v"ml"“g' U\.\_Jn. ln- Ly A o W e Py Ba A
LU TR T e e e T T «Urv' —"‘\vn| 1"’L.r\.>. \'\qﬁqf LTI A (T~ "1'
CHLE ‘lui\,ju_«""r*ul "‘-"W"’”“" b Vi Pl g r-! \qn\ IPJ ‘\-J'\.ﬁhr 1 b -\.1- "\'J\.H‘-\f\.v P ey \r'L\_‘.\,.\ 2 A j@ﬂ J,F’;\.Je ?\- ;’Q—_,.‘J?-"u ¢ " u":,
. i : b S S e _Q?r
e -'¢ﬂ,~*:*"w Wit Al v i il e T PN SPGB SVENS SR \ ‘\Q;?ff‘ 7 d“ -ﬁrW
¥ W ; v SO
Theia Barsd r =
Deapley Fimar w0 Go o so01 sow 2065 W~ T i 5
= 3 Saas . b b : Pty B

Example of conventional digital EEG (Ieft)-and QEH{ght) on the same screen at the same time. Th
conventional EEG includes examination and markingEG traces and events. The QEEG (right)
includes the Fast Fourier Transform (Top right) andmative database Z scores (Bottom right).
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The Use of 19 Channel Surface QEEG Z Scores and EE&ofeedback

As described by Thatcher and Lubar (2008), sciesndisUCLA in the
1950s (Adey et al, 1961) and later Matousek andrBen (1973) were the
first to compute means and standard deviationgferent age groups and
then Z scores to compare an individual to a ref@erormative database of
means and standard deviations. The Z statistlefised as the difference
between the value from an individual and the mdahenormal reference
population divided by the standard deviation ofglbeulation. John and
colleagues (John, 1977; John et al, 1977; 1987gredgd on the use of the Z
score and reference normal databases for cliniedliation including the
use of multivariate measures such as the Mahalamiétance metric (John
et al, 1987; John et al, 1988). For purposesséssing deviation from
normal, the values of Z above and below the meaighwinclude 95% to
99% of the area of the Z score distribution isofised as a level of
confidence necessary to minimize Type | and Typardrs. The standard-
score equation is also used to cross-validate matore database which



again emphasizes the importance of approximati@en@aussian for any
normative QEEG database (Thatcher et al, 2003).

The standard concepts underlying the Z scoresstatind QEEG
evaluations were recently combined to give riseetd-time EEG Z score
biofeedback, also referred to as “Live Z Score 8salback” (Thatcher
1998a; 1998b; 2000a; 2000b; Thatcher and Coll@@62Collura et al,
2009). The use of real-time Z score EEG biofeekllimanother method to
advance the integration of QEEG and Neurofeedbalthe figure below
illustrates the differences between raw score EB&édback and real-time
Z score EEG biofeedback.

Difference Between Standard Neurofeedback vs ‘Live’ Z Score Neurofeedback

N Arpuner AD Computer
S Cony
el Standand EEG
Feedhack Neurofeedback
+
! 1-Apples & Organges
v Video & " L 2—mm
Display-Sound Sound Variahle 3 Mo reference ip Guide NF
Control
Raw or Processed HEG values
Threshold is ‘Unknosmn®
NN Ampiifier AD Computer
= Cony
e 2
Real-Time or “Live”™
Feetiack Z Score Neuwrofeedback
: 1-Metric, Le,, 3 7’ Score
Video & =
Display-Sound Sound || Vasiable & e 2 Threshold tremnd
Control Threshold 3 instantaneous Comparison
10 a nwmative database

Move 7 tovward 0

Diagram of the difference between standard EECGekidtback and Z score EEG
biofeedback. The top system involves standard Biete@edback that relies on raw EEG
measures such as power, coherence, phase, amggyhenetries and power ratios and
an arbitrary and subjective threshold value. Th#obo system is the same as the top hut
with a transform of the raw scores to Z scorestand a simplification of diverse metrigs
to a single metric of the Z score in which the gii@d is mathematically defined as a
movement toward Z = 0. The magnitude of the Zespoovides real-time feedback as to
the distance between the patient’'s EEG and the &ti@®s in an age matched sample [of
healthy normal control subjects.

There are several advantages of real-time Z scofedalback
including: 1- Simplification by reducing differentetrics (power,
coherence, phase, asymmetry, etc.) to a singlenconmetric of the Z



score; 2- Simplification by providing a thresholtdadirection of change
l.e., Z=0 to move the EEG toward a normal hgaidference population
of subjects,and 3- improved linkage between patient’s comtéagmd
symptoms and localization of functional systemthabrain. The next
three figures show examples of how a symptom chstind QEEG
evaluation are linked to give rise to a neurofeellaotocol.

Symptom Check List to Creale Hypotheses for Neurofeedback

Symptoms Check List Hypothesis Hypothesis
Symptom / Complaint Severity ¥ Chaninel 4 Region of Interest N
| Perception of Letters Problems 0 |FP1 | |Angular-Super Parietal-Supramarginal Gyrus |

Slow Reader 0 FP2 Anterior Cingulate
Problems with Spatial Perception 0 F3 Cingulate Gyrus
Orientation in Space 1] F4 Cuneus
Audttory Sequencing 0 3 Fusform Gyrus
Short-Term Memory Problems 0 = c4 Irfenor Frontal-Bdra Nuclear Gyrus
Depression 1] P3 inferior Panetal Lobule
Word Finding Problems i P4 Inferior Temporal Gyrus n
Problems Mutti-Tasking 0 o Inferor-Middle-Supenor Occipital Gyrus
Poor Judgement ] 02 a Insula
Attention Deficits 0 F7 Lingual Gyrus
Hyperactive 0 F8 Medial Frontal-Subcallosal Gyrus
Skiled Motor Movements 0 T3 Middle Frontal Gyrus
Obsessive Thoughts 0 B T4 . Middle Temporal-SubGyral Gyrus K

Example of a computer generated Symptom Checllishich the clinician first
evaluates the patient’'s symptoms and complaintgyudinical and neuropsychological
tools and then enters a score of 0 to 10 basekeosetverity of the symptoms.
Hypotheses as to the most likely scalp locatiorslaain systems are then formed based
on the scientific literature that links symptomsl @omplaints to the locations of
functional specialization. (From NeuroGuide 2.5.7)

Modules or “Hubs” are linked to various basic fuactal systems that
are involved in cognition and perception (Hagmahal €2009; Chen et al,

* Simultaneous suppression of excessive theta amidmeement of deficient beta is achieved by using
absolute Z score threshold, which is a simplif@attompared to standard raw score EEG biofeedback.
For example, if the threshold is set to an absolatee of Z < 2, then reduced theta amplitude eladated
beta amplitude will both be rewarded when the imstacous EEG event exhibits a Z < 2 theta and beta
power value.



2008; He et al, 2009). Recent neuroimaging stusl®w that all of the
various “modules” are dynamically linked and int#hee and that sub-sets
of neural groups in different modules “bind” togettor brief periods of
time to mediate a given function (Sauseng, anch&dich, 2008, Thatcher et
al, 2008a; 2008b). An illustration of Brodmaneas and electrodes as
they relate to functional systems is shown in tharé below.

Symptoms, Elecirodes Parietal Lobe (P3Pz) i
& Brodmann Areas of visual £ somatnspatial iformation

F7;€3)
Thinking, Planning,
Mol execwtion, @0 . e i
Executive Functions,
Mood Control
e Lobe Occipital Lobe
mm““ wm&
imoived in long term TP ERCe .
mensny and emotion
Posterior Cinguilzie
{P3.Fz)
attention, long-tErm
_____ IMETTMY
Amtenor Cinguilaie GyTus
_ £ Parahippocampal Gyrus
Vobtional movement, attenti
long term memmy g {P3,T5,Pz)

Short-term memory, atiention

Example of Brodmann areas as they relate to vageuasral functions and “Hubs” or
“Modules” and scalp electrode locations that “sémbectrical activity generated by
various functional systems.

The linkage of a patient’'s symptoms and complamtse
localization of functional systems in the braim&sed on the accumulated
scientific and clinical literature from QEEG, ME®RI, PET and SPECT
studies conducted over the last few decades asawéile basic neurological
and neuropsychological lesion literature. The Ruseeuropsychologist
Alexandra Luria (1973) and the American neuropsiadiet Hans-Lukas
Teuber (1968) are among the leading scientistsalcenmportant linkages
between symptoms and complaints and localizatidormdtional systems in



the brain. The integration of QEEG and EEG bidbsek relies upon such
linkages as the initial stage in the formation efirofeedback protocols as
illustrated in the figures in this section. Theads to first produce
hypotheses about likely linkages between a paseaymptoms and
complaints and the location of functional systemsda on the scientific
literature prior to conducting a QEEG. Step t&da confirm or disconfirm
the linkage by evaluating brain locations of dawias from normal using
QEEG and LORETA 3-dimensional imaging and stepetlisg¢o produce a
biofeedback protocol based on the match betweeathgpized locations
and the QEEG and/or LORETA evaluation. Luria @©9&mphasized that
de-regulation of neural populations is reflecteddgyuced homeostatic
balance in the brain in which symptoms are reptteseas “loss of function”
that are often accompanied by “compensatory” pisees One goal of the
linkage of QEEG and neurofeedback is to identifgt aantrast the weak or
“loss of function” components in the EEG from tlmpensatory processes
where the weak systems are the initial target®BEG biofeedback
protocol.

individualized Protocol Design Based on Convergence of
QEEG Z Scores and Symptom Check List

~yTapious Check QEEC Z Scores LORETA Z Scores
|
; (RN . 19 Fpammes
scL [ (X[ [X

Coherenoe x| | T
Phase Reset

Loreta

Sum [T |%
Locations

Newrofeedback Control Panel

Flow diagram of individualized protocol design béisa linkage of patient's symptoms
and complaints with surface QEEG Z scores and LOREBcores. The columns of the




matrix are the 19 channels of the 10/20 Internalietectrode sites and the rows are
symptoms and QEEG EEG features. Hypothese®ared as to the most likely
electrode site locations associated with a givenpggm and complaint based on the
scientific literature. The hypotheses are thetettbased on QEEG and LORETA Z
scores. Weak systems representing “loss of fontare identified when there is a
match of QEEG Z scores with the hypothesized doaltions based on symptoms.
Compensatory locations are identified by a mismagtiween hypothesized symptoms
and complaints and the locations of observed QEEGares. A suggested
neurofeedback protocol is then produced basedelotations of the “weak” systems.

Figure below is an example of a 19 channel surEde@ biofeedback
setup screen in Neuroguide where users can seledeavariety of
measures or metrics all reduced to the single metrihe Z score. This
includes, power, coherence, phase differences,immuplasymmetries,
power ratios and the average reference and Laplactantages. 19
channels is a minimum number of channels in oreompute accurate
average references and the Laplacian montage wharmestimate of the
current density vectors that course at right antfizsthe skull.

Z Score Neurofeedback
Panel Select Frequency Bands & 1 1o 19 Channels
& Combinations of Chamels Tor Cross-Spectra
Metric F e =
Select Power or & Hbsoiiie Power & Deta & O ——
Coherence, Phase € Relative Power € Theta = =
Amp. Asym ¢ Power Ratio Pias &a =
€ Beta B =
© Ampltude Asymmetry Sy
" Cohensnce J s o
O fAbsolute Phase " figha 1 & T C4
€ Mpha 2 (] P2
P4
Mortage Reference ¢ Beta & =
Select Montage & Linked Ears i Beta 2 & A =
L iacian Ave._ " fAversge Reference Bata 3 = =
Ref & Linked Ears i =
" T3
- ral['lrg i T tpperE——— 3 Window Sound Display —
1 wn F02Bsec oA %10/20 tead —
Z Score Thweshokd < oW Z = J
Reward if Less Than o550 =
- -- = =N
Delete
Pz -

Sound onfolf & Visual
Display

]gar-cel | | Save I | Load |

Example of 19 channel surface EEG Z score biofegddbatup screen inside of
Neuroguide.




Multiple frequencies and multiple metrics may bkested in which a
threshold must be reached before a visual andftitcay reward is given
(e.g., Z2<2.0). The 19 channel Z score apprg@actides for seamless
integration of QEEG assessment and 19 channel2 seurofeedback or
treatment. Because there are approximately §0886ible instantaneous Z
scores, it is important to limit and structure btefeedback protocol in a
manner that best links to the patient's symptonts@mplaints. The
linkage of patient’'s symptoms and complaints allygses that are
confirmed or disconfirmed by QEEG assessment ad tesdevelop a
neurofeedback protocol. Blind and random selaatioZ score metrics
runs the risk of altering “compensatory” systemd aat focusing on the
weak or “loss of function” systems that are linkedhe patient’s symptoms
and complaints.

The figure below shows an example of a simple A®Rad display
for feedback where the circles turn green wherstioll is met (e.g., Z <
2.0) and provides feedback about the scalp locaitioat are meeting
threshold.



Nenrofeedback Reinforcement Window — Can Be Moved to a 2 Monitor

Green = Threshold was reached

Threshold is < Z vaile set in
the Surface NF Window

Refmforcensent requires that
100'% of the time poarts in a
250 msec 1o 1 sec window
are less fhan the Z fhreshold

10420 Scalp Locations

Example of 19 channel feedback display. Theewat a particular location turn green
when threshold is reached, e.g., Z< 2.0

The figure below is an example of a progress mongochart that is
displayed for the clinician during the course adfbedback. One strategy is
to develop a protocol based on the linkage to #iept's symptoms and
complaints as discussed previously and then ttheef score threshold so
that it is easy for the subject to meet threshaldithus produce a high rate
of successful ‘Hits’ or rewards. Step two isawer the threshold and make
the feedback more difficult, e.g., Z < 1.5 andlespatient or client gains
control and receives a high rate of reinforcemeragain the lower the
threshold, e.g., Z < 1.0 in a “shaping” proceswimch operant conditioning
Is used to move the patient’s brain metrics tovtaedcenter of the normal
reference population or Z = 0.




Neuwrofeedback Progress Window — Monitor the ClientfPatient’s Progress

Percentage of time windows that
received resnformmemnsent
Percent Criteria /

100 /

80

60

40

20

0

00:00 00:05 00:10 00:15 00:20 00:25 00:30

30 second window of events that met crifleria

Example of one of the progress charts that a @inigiews during the course of
neurofeedback. The idea is to shape the patibrdia toward the center of the normal
healthy reference population where Z = 0. Iritigthe threshold is set so that the patien
receives a high rate of reinforcement, e.g., ZOs then to lower the threshold and make
more difficult, e.g., Z < 1.5 and then as the pdtegain receives a high rate of
reinforcement to again lower the threshold, e.gs, Z0 so as to shape the brain dynamics
using a standard operant conditioning procedure.
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Neurolmaging Neurofeedback or Real-Time LORETA Z Sore
Biofeedback

Improved accuracy in the linkage between a pasesytimptoms and
complaints and the localization of functional systecan be achieved by the
biofeedback of real-time 3-dimensional locationsaxels in the brain.

This method has been successfully implementedfwitbtional MRI (i.e.,
fMRI) for chronic pain, obsessive compulsive disygland anxiety
disorders Apkarian, 1999; Yoo et al, 2006; Weiskagifal, 2003; Cairia et
al, 2006; Bray et al, 2007; de Charms et al, 2d@4Charms, 2008). The
figure below shows an example of fMRI biofeedbardplhys



Information from individual spatial points can lEgsegated into multiple anatomically
defined three-dimensional regions of interest. Heeeactivation levels (represented as
colours) of three brain regions are rendered oarsstucent ‘glass brain’ viewd) -
Activation in these regions can either be plottecbsid-by-second in real time or can be
presented to subjects in more abstract forms, asi¢his virtual-reality video display of a
beach bonfire, in which each of the three elemehtie flickering fire corresponds to
activation in a particular brain region. Brain &ation can control arbitrarily complex
elements of computer-generated scenarios. (Fro@hdems, 2008).

However, fMRI biofeedback also referred to as Neuaging
Therapy has several significant limitations in camgon to LORETA 3-
dimensional EEG biofeedbathk - A long time delay between a change in
localized brain activity and the feedback signal,,20 seconds to minutes
for fMRI while LORETA EEG biofeedback signals invel millisecond
delays; 2- fMRI only provides indirect measuresietiral activity because
blood flow changes are delayed and secondary tagesain neural activity
whereas EEG biofeedback is a direct measure ofhelactrical activity
and, 3- Expense in which fMRI costs 3 million dddldor the MRI machine
plus $30,000 per month for liquid helium whereassHttofeedback
equipment and maintenance costs are less thanGRLOJhe spatial
resolution of LORETA source localization is approgtely 7 mm which is
comparable to the spatial resolution of fMRIEMRI, however, offers the

® LORETA means “Low Resolution Electromagnetic Tomsgny” (Pascual-Marqui et al, 1994). Since
the inception of this method in 1994 there haventmeer 500 peer reviewed publications (see
http://www.uzh.ch/keyinst/NewLORETA/Quote LORETA/RapThatQuote LORETAO05.htm for a partial
listing of this literature).

® The voxel resolution of LORETA is 7 nimhich is adequate spatial resolution because thdrBann
areas are much greater in volume than 7ZmAiso, the biological resolution of functional MRlay be
worse than LORETA because it depends on the vasardhitecture of the brain. For example, Ozcan et
al (2005) showed that maximal fMRI spatial resalntis > 12 mm



advantage of imaging of non-cortical structureshsagthe striatum,
thalamus, cerebellum and other brain regions wagsi@EEG is limited to
imaging of cortical dipoles produced by pyramidall Nonetheless, even
with this limitation several studies have proveatthiofeedback using
LORETA real-time 3-dimensional sources is feas#rld results in positive
clinical outcomes (Lubar et al, 2003; Cannon e2@(5; 2006a; 2006b;
2007; 2008). The next two figures shows exampldeORETA EEG
biofeedback of the anterior cingulate gyrus andesgonding increases in
current density as a function of biofeedback s@ssio

Raw current source density values from
Anterior Cingulate gyrus (ACC) activation
in EEG Neuroimage Neurofeedback.
Subjects viewed a bar graph and were
instructed to increase the height of bar
graph which was coupled to an increase|in
the real-time current source density of th
ACC (14-18 Hz) in the intra-cranial region
of seven voxefs(ROI). From Cannon et al,
2006a
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Learning curves for AC as a result of training in AC, LPFC, RPFC
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Increase in current density (14-18 Hz) from thrigéieint ROIs, resulting from training
of the Anterior Cingulate gyrus (AC). LPFC = lefie-frontal cortex; RPFC = right pre
frontal cortex. The AC appears to influence incesas the LPFC & RPFC higher than
the increase for itself although all three ROIgé&ased current density as a function of
training. Corresponding improvements in workingmory and attention were also
measured. From Cannon et al, 2009.

21 — Coherence, Phase and Circular Statistics

Phase angle has an intrinsic discontinuity, f@ameple consider the
linear and circular distributions of 360 equididtpaints. In the linear
distribution 0 and 360 are at opposite ends whiléne circular distribution
0° = 360 (Jammalamadaka and SenGupta, 2001). To evalhase angles
it IS necessary to use vector algebra and compnreas vector with
maghnitude or length r, and a direct®rand to calculate the average x and y
components of the mean vector:

Eq. 21 - X =%Z[sin(al)+sin(az)+sin(ag)+...sin(an)]
Eq. 22 - y= %iz:[cos(al% coda,)+coda,)+...coda, )



where n is the number of observations and the ith observation.

The length or magnitude of the mean vector is:
Egq.23- r=X*+y
And the vector mean direction is:

Eq.24- © =arctarfx/y)

The magnitude of the mean vector gives an incioatf the relative
dispersion or coherence of the observations. rdhge of ris 0.0to 1.0. If
the phase angles or differences are clusteredionpad together in one
direction then r will approximate 1. If the phaBHerences are random over
the interval, then r will be small and approxim@te The statistical
computation of the cross-spectral “atoms” provide®mplete description
of the EEG phase locking, synchrony and phase sifglso phase resetting
If differences or derivatives as a function of tiare used).

Eq. 25 - Angular variance’ s 2(1-r)
This is equivalent to variance in linear statistic

Eq. 26 -  Angular deviation: s = 2(1%f)

This is equivalent to standard deviation in linsiatistics.



Coherence is high when phase delays are clusiered
or grouped together. Magnilude of coherence =r

J ]

Coherence is lower when phase delays are scattered

Fig. 21 — Circular synchronization index. r = mégtle of coherence

22 — Phase straightening

As mentioned previously phase angle has an imtraiscontinuity,
where 0 and 360 are at opposite ends while initbalar distribution 8=
360° (Jammalamadaka and SenGupta, 2001). A metheairtove
discontinuities due to the mathematical limit of #rctangent is a procedure
called “phase straightening” by Otnes and Enochri($6ii2, p. 238). The
procedure involves checking for a large jump whelppens when the phase
goes from + 180to — 183 and then adding or subtracting 8é@pending
on the direction of sign change. For example= (180 —)° + (180 —)° =
360 - 2¢ which is the same as 8ince -(180 €)° = 180 +¢. This
procedure results in phase being a smooth funcfitime or frequency and
removes the discontinuities. The programmer neatisto keep track of
the number of winds around the circle also called“tvinding number” if
absolute phase differences are needed.



Phase Straightening

B AN
SN

Fig. 22 — lllustration of phase straightening whigre change or discontinuity from — 186 +
180 is removed by adding or subtracting 36@pending on the direction of change (adapted
from Otnes and Enochson, 1972).

Phase straightening is important when computinditeeand second
derivatives of the time series of phase differermsause the discontinuity
between- 180 to + 183 can produce artifacts. All of the derivatives and
phase reset measures in this paper were compuéz@hése straightening
in order to avoid possible artifact.

23 — EEG Spindles and Burst Activity

The human Electroencephalogram is characterizeddwyrical events
that have a specific shape and physiological okgiied “spindles” or
“burst activity”. A spindle is defined as a rhgttt and sequential build up
of EEG amplitudes that wax and wane and appeaas é&nvelope”
structure. Spindles are also referred to as aogngeand recruiting
responses (Steriade, 1995). Spindles are eslygmalalent during late
drowsiness and sleep, however, spindles also altourg waking and
focused attention. In animal studies spindle &sponses referred to as



“augmenting responses” can be produced by thalatmwlation and
involve activation of the upper layers of the crrémd are typically negative
in polarity as the first event in the sequentialdup of voltages.
“Recruiting responses” also have a spindle likecitire but the first wave is
positive in polarity at the scalp surface and ineglactivation of the lower
layers of the cortex (Steriade, 1995). Both auging and recruiting
responses exhibit the same spindle like “envelgbape but have different
initial polarities and are not easy to distinguisithe human EEG record.
For this reason, Steriade (1995) recommends theatefier to all spindles as
“‘augmenting responses”.

There are several methods that are used to quéspihdle” or
augmenting response structure such as the intedisgnterval, spindle
peak amplitude and spindle duration. Figurel&&s an example of how
NeuroGuide quantifies spindle activity using JTHAldhe time series of
instantaneous spectral measures (govtev.appliedneuroscience.cotiown
load the free demo).

Simulaied Spindles

Spinviie Duration Spandie Full Widih Half Maxinsums
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Fig. 23 — Top are simulated spindles and bottothadime series of the instantaneous
power of the spindles. Quantitative measurepitde duration, intensity and averag
inter-spindle intervals are computed. The FulbtWiHalf Maximum (FWHM) is a
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measure of the area under the curve and is alseagure of the duration of the spindle|or
“burst” activity. Example produced using NeuroGudiemo software from
www.appliedneuroscience.com.

24 — The Bi-Spectrum and Bi-Coherence and Bi-Phadafference

Anothermethod to quantify spindle activity and brain cocthaty as
it relates to spindles is the Bi-Spectrum whicHiisded into auto-channel
cross-frequency (single channels different freqe=)@nd cross-channel
cross-frequency (different frequencies in differelmhnnels).There are
several different definitions of the Bi-Spectru@ne is by Hasselman et al,
(1963) as the3moment statistical property called “skewness” Whi@s
used to detect nonlinear interacting ocean waBeglinger and Rosenblatt
(1967) elaborated and described the computatidineofri-spectrum as the
4™ power statistical moment or “kurtosis”.  Thephgation of this
definition of bi-spectra is purely statistical ahd primarily used to detect
non-linearities. The second definition of bi-sppacs by Bendat and
Pearsol (1980) in which bi-spectra are producepdial-coherence
analyses in order to isolate the covariances betw#ferent frequencies
and locations.  The bi-spectrum using partidderence is a measure of the
association between different frequencies and rdiffeinputs, for example,
a measure of the phase consistency and the plfésemite between theta
and beta frequencies (Helbig et al, 2006). Wittal €1997) and Helbig et al
(2006) provide detailed time-series analysis anthematics of the bi-
spectrum, bi-amplitude, bi-coherence and phaselem®nce. In the
present paper we use the Bendat and Piersol (Bpf0pach to bi-spectra
and bi-coherence to develop measures of coherencphase differences
between different frequencies within a single cledutauto bi-coherence and
bi-phase) and the correlation between frequennié#ferent EEG channels
or sensors (cross bi-coherence and cross bi-phase).

To calculate bi-coherence, it is necessary to piyltivo complex
domain transforms of the digital time series tcagba 3 order transform
and because of the linearity of the transformstardeed for real-time
computations we transform each instant of timexaio the complex
domain by multiplying a time series by a sine aasime sine wave at a
specific center frequency and band width followgddw-pass filtering.
This well established signal processing methoalied “complex
demodulation” (Otnes and Enochson, 1972) and is/abpnt to a Hilbert
transform that refer to it as a complex demodutatiansform or “CDF”
where each time point is represented as a poithiennit circle 0 to 2pi.



This is an instantaneous cosine and sine reprégentd a time series from
which the time series of the “cospectrum” and “cgmttrum” are
computed from the cross-spectrum (see Appendix Bhfo mathematical
details of complex demodulation). As describedantion 9 the results of
the CDF is the creation of a new real valued tievees. The CDF real
valued time series is then used as the input tatigd@nalyses for the
computation of bi-coherence and bi-phase.

25- What is the physiological meaning of EEG Auto-fequency
Coherence (AFC) and Auto-Frequency Phase (AFP)?

Cross-channel Auto-Frequency Coherence and Autp#necy phase
measure the spatial and temporal relations bet&&#h “spindles” or “burst
activity” and “rhythmic episodes” as well as theduency structure of EEG
bursts between two channels but at the same freguyea., auto-
frequency). Complex demodulation of a EEG timees at a given center
frequency measures the instantaneous powe) @f\Activity at each instant
of time in a frequency band, similar to a filteicept that the time series is
represented in the complex domain. The frequsepegtrum of “spindle
activity” at a given frequency measures spindleatan and inter-spindle
intervals or how common spindles are within a rdand auto bi-coherence
shows the phase synchrony of spindle activity fé¢dint frequencies within
a channel. Cross bi-coherence measures the pyasierony of spindle or
burst activity at the same or different frequencylifferent channels.

The FFT of the complex demodulation time se(€) computes the
inter-burst frequency and average burst durati@hbamst rise times because
X'y is the envelope of the spindle structure of EEEGnés.  For example,
long duration bursts result in high power in therdo frequencies of the FFT
spectrum. Short inter-burst intervals result ighhpower at higher
frequencies of the FFT spectrum.



FFT of the JTFA Time Series shows high power at low frequencies when
burst durations are long and high power at high frequencies when inler

burst intervals are short
Inira Burst Inber Burst
Duration Inberval
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Fig. 24 — Top is filtered EEG at 25 — 30 Hz from&f&l reveals the burst structure of t
EEG. Bottom is the complex demodulation (JTFA)diseries of instantaneous powe
at 25 — 30 Hz (%) and represents the integral or envelope of aatstity in the hi-beta
frequency band. Long duration bursts result ghtgpectral power in the lower
frequencies and short inter-burst intervals rasuftigh spectral power in the higher
frequencies of the spectrum. Analyses were pratluseng the NeuroGuide Lexicor

demo from the download at www.appliedneurosciemee.c




Bottom — Instantaneous Theta Power
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'Fig. 25 - Top is the spontaneous EEG from O2.ttddo is the complex demodulation

(JTFA) time series (¥ of the instantaneous power between 4 — 7 Hzak$m the
JTFA time series represent integrations or theamtsheous envelope of burst activity i

the theta frequency band. Analyses were prodused) the NeuroGuide Lexicor dem
from the download at www.appliedneuroscience.com
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Top - Spontaneouws EEG in O2.
Mixture of many diffierent frequencies
Time Series = X,

Bottom — Instantancous Beta Power
Peaks are “bursts™ of power in the
Beta frequency band {25 — 30 Hz)
Time Series = X',
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Fig. 26 - Top is the spontaneous EEG from O2.ttdois the complex demodulation
(JTFA) time series (¥ of the instantaneous power between 25 - 30 Reaks in the
JTFA time series represent integrations or theamtsheous envelope of burst activity i
the hi-beta frequency band. Bi-coherence betwleetwo JTFA time series in fig. 20
and fig. 21 measure the phase synchrony of butisitgan the theta and beta frequenc
bands. Bi-phase measures the average time diffesdretween theta and beta burst
activity. Analyses were produced using the Neuid&liexicor demo from the

download at www.appliedneuroscience.com
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Spectira of the Complex Demodulation Time Series for Theta
{4 — 7 Hz) and Hi-Beta {25 — 30 Hz) Frequencies
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Fig. 27 — FFT analyses of the time series of insta@ous power over a 1
minute interval of time in the theta and beta frary bands.

26- How to compute the Bi-Spectral Amplitude or Cres-Frequency
Correlation

The simplest of the Bi-Spectral measures is thestadion or
covariance of amplitude or power over time betwaiffierent frequencies.
For example, the covariance or correlation betwaraplitudes at 6 Hz
(theta) and 15 Hz (beta) over time. One simpingotes the correlation
coefficient in a matrix of m x n dimension where=nshannels and n =
frequency. The diagonal of the matrix = 1 whéwe ¢orrelation is between
the same channel and the same frequency. In Seige the matrix is
computed from 1 to 50 Hz at 1 Hz resolution andttine matrix is 50 x 50 x
171 electrode combinations (actually 171 + 19 [died] = 190). The
equation for this computation is the same as egu&tiused in the spectral
correlation coefficient but expanded to includeretations between
different frequencies.



27- How to compute Auto-channel Cross-Frequency @erence (ACC)
(same channel different frequencies)
The procedure is:

1-

Transform the digital value of the EEG time sexgs channel X
to a new time seriesxby multiplying each time point by a sine
wave at frequency 1 and a cosine wave at frequéncyhen, low
pass filter and compute the square root of the slusgquares of the
cospectrum and quadspectrum at each point of brpeaduce the
new time series x’(see section 9).

Transform the digital value of the EEG time serg®s channel X
to a new time series x’by multiplying each time point by a sine
wave at frequency 2 and a cosine wave at frequ2ndyhen low
pass filter and then compute the square root otine of squares
of the cospectrum and quadspectrum at each potirhefto
produce the new time seriesx(see section 9).

Compute the coherence of the two time serieand x”; from the
same channel for the two frequencies 1 and 2 fcin @estant of
time.

28- How to compute Cross-Channel Cross-FrequencydBierence
(CCCQC) (different channels different frequencies).
The procedure is:

4-

Transform the digital value of the EEG time sergs channel X
to a new time seriesxby multiplying each time point by a sine
wave at frequency 1 and a cosine wave at frequéncyhen, low
pass filter and compute the square root of the glusgquares of the
cospectrum and quadspectrum at each point of brpeaduce the
new time series x'.

Transform the digital value of the EEG time sekigg channel Y
to a new time series by multiplying each time point by a sine
wave at frequency 2 and a cosine wave at frequndyhen low
pass filter and then compute the square root o$tine of squares
of the cospectrum and quadspectrum at each potirhefto
produce the new time series X’



Auto-Channel Cross-Frequency Phase (ACFP) and hbasnel
Cross-Frequency Phase (CCFP) are computed in tine is&anner as in
previous sections by computing the arctangentefatio of the
guadspectrum to the cospectrum at each momenheffor the two
transformed phase difference time series.

In summary, there are four categories of the béspen for the
purposes of relating different frequencies: 1- AGtwannel Auto-Frequency
(AA), 2- Cross-Channel Auto-Frequency (CA), 3- Altbannel Cross-
Frequency (AC) and 4- Cross-Channel Cross-Frequ@iC).

29- Auto Channel Cross-Frequency Coherence (ACC) tefined as the
square of the ratio of the cross-spectra within aisgle channel at two
different frequencies divided by the product of theauto-spectra. For
example, the auto bi-spectrum between the EEG fheaency (4 - 7 Hz)
and the beta frequency band (25 — 30 Hz) as reddrdm electrode
location F3. To compute auto channel cross-frequenherence one first
transforms each time point to the complex domaingusomplex
demodulation and then one computes the Fouriesfmam of the complex
domain time series.

Eq. 27:

Auto Cross-Frequency Coherence (ACG){f after complex demodulation
(x',y") is defined as

(D (@(x f)u(x" f,) +b(x' f)v(x" £,))* + (D (a(x f)v(x" f,) =b(X fu(x" f,)))?
AcCC =" N

Z(a(xl f;)? +b(x fz)z)zu(xn f,)? +v(x"f,)?)

Where x = frequency activity recorded from a singflannel and x’ =
frequency 1 and x” = frequency two recorded frdra same channel. N
and the summation sign represents averaging c@guéncies in the raw
spectrogram or averaging replications of a givequdency or both. The
numerator and denominator of bi-coherence alwagss¢o smoothed or
averaged values, and, when there are N replicatiohsfrequencies then
each bi-coherence value has 2N degrees of freedom.



30- Cross-Channel Cross-Frequency Coherence (CC®) a measure of
the phase consistency between two different fregjgsnmecorded from two
different locations. For example, the phase ctaisty between theta (4-7
Hz) and High Beta (20 — 40 Hz) EEG signals in tywatmlly separated
channels F3 and F4 of the 10/20 system of EEGrelgetiocation.

Mathematically, the Cross-Channel Cross-Frequency Coherence (CCC)
is defined as the ratio of the auto-spectra and ces-spectra for two
channels, X and Y and two frequencies, fand f,. We again refer to the
definitions of the cospectrum and the quadspec({aaa section 9) and then
we define the cross bi-spectral coherence:

Eqg. = 28

Q- @ f)uly f,) +b(x fV(Y £,)))% + Q- (@(x f)v(y' f,) —=b(x f)u(y f,)))®
ccCc=—+ 2 2 - 2 2
Z(a(xl f))” +b(x f,) )zu(y. f,)2 +v(y' f,)?)

Where x’ = channel 1 and y’ = channel 2=ffrequency 1 in channel 1 and
f, = frequency 2 in channel 2. N and the summagign represents
averaging over frequencies in the raw spectrognaaveraging replications
of a given frequency or both. The numerator agbthinator of bi-
coherence always refers to smoothed or averagees;and, when there are
N replications or N frequencies then each bi-camezesalue has 2N degrees
of freedom.

31- Bi-Spectral Phase
Bi-spectral phase difference is generically defiasd

Eq. 29 —
(Smoothedquadspectrum( f,, f,))
(Smoothed cospectrum( f,, f,))

Phase difference(f,) = Arctan

Like bi-coherence there are two subdivisions odfmctral phase: 1- Auto
Bi-spectral phase and 2- Cross Bi-spectral phase.



32- Auto-Channel Cross-Frequency Phase Differen¢&CP) is a
measure of the phase difference between two phtisedce time series at
two frequencies recorded from one location. adehdifference between
two time series and two frequencies is defined @it on the unit circle
and is represented in degrees or radians and ismmalzed” with respect to
frequency (i.e., independent of frequency becaus#&)r For example, a
phase difference of 4%s the same for the standard EEG frequency bahds o
delta, theta, alpha, beta, gamma, etc. Becausesdact and because of the
physics of superposition of waves the bi-specthalse measure is a useful
measure of local generator signals that are cowgilddferent frequencies
and exhibit bi-frequency phase locking. The fastl second derivatives of
bi-frequency phase coupling are similar to therhat®upling measures and
are useful measures of “transition states” aurgttion points and stability
measures of homeostatic systems measured frongle sncation and given
superposition of waves from many different locasion

The equation for use with a hand calculator to asiep\uto Bi-Spectral
Phase (f, f;) or ACP is:

Eqg. 30

Z(a(xl fv(x" f,) —=b(x f)u(x" f,))
ACP = Arctan
D @(x fu(x" f,) +b(x f)v(x" f,))

Where x’ = frequency 1 and x” = frequency two resd from the same
channel and N = number of time samples (for cospecand quadspectrum
calculation see section 9).

33- Cross-Channel Cross-Frequency Phase Differen(€CP) is a
measure of the phase difference between two réatdgphase difference
time series at two frequencies recorded from tvil@igint locations. This
Is an important measure of network dynamics andnconication at

different frequencies across space. Becausentasiaous phase is a scalar
and a real number then the commutation properfiaigjebra hold and the
use of the Fourier transform is valid to compute dictangent of the
guadspectrum and cospectrum. Phase differenesbettwo locations and
two frequencies is defined as a point on the urgtecand is represented in



degrees or radians and is “normalized” with respeftequency (i.e.,
independent of frequency because r = 1). For el@mphase difference of
45 is the same for the standard EEG frequency bahdslta, theta, alpha,
beta, gamma, etc. Because of this fact and becduke physics of
superposition of waves the bi-spectral phase measwr useful measure of
local and distant coupling by frequency and phaskihg. The first and
second derivatives of bi-phase coupling are use&dsures of “transition
states” or bifurcation points and stability measunf homeostatic systems
(similar to their application to phase reset déxatiin section 9).

The equation for use with a hand calculator to asteCross Bi-Spectral
Phaseor CCP is:

Eqg. 31-

> ((@x f)v(y f,) —b(x f)u(y f,))
CCP = Arctan
Z((a(xl fu(y' f,) +b(x f)v(y' f,))

34- Coherence of Coherence

Defined as the average Coherence between two énesof
Instantaneous coherence for a pair of electrodésaxcommon reference.
The importance of a common reference is becausbi@yg subtraction
occurs only by virtue of a common reference wheegaaverage reference
or a Laplacian reference mixes signals from allissato each of the
remaining leads thus eliminating valid and meanihgfgebra. A view of
all pair wise combinations of “Coherence of Coheegrfor 19 leads = 171
combinations using Cz as the reference electrountergure 28.



Montage: Default EEG ID: Cz-Theta-AbsPhase

Delta Coherence

Fig. 28 — Example of coherence of coherence for df1 combinations of 19
electrodes. Analyses were produced using the Ne@aide Lexicor demo from the
download at www.appliedneuroscience.com

35 — Phase Difference of Coherence

Defined as the average Phase difference of it deries of
instantaneous coherence between any pair of etksstiwith respect to a
common electrode. For example, the two time sarienstantaneous
coherence between Cz-P3 and Cz-P4 are the inplg fghase analysis in
which the average phase difference between thditweoseries of coherence



exhibits statistically significant phase stabilityer time (i.e., significant
coherence values). An example of 19 leads =cbribinations is in
Figure 29.

Montage: Default EEG ID: Cz-Theta-AbsPhase

Theta Phase Difference (Degree)

Fig. 29 — Example of phase difference of the tim&sges of instantaneous
coherence for all 171 combinations of 19 electrode#\nalyses were
produced using the NeuroGuide Lexicor demo from thelownload at
www.appliedneuroscience.com

36 — Coherence of Phase Differences
Defined as the average Coherence of the time safriastantaneous
phase differences between any pair of electrodédsrespect to a common



electrode. For example, the two time seriesinstintaneous phase
difference between Cz-P3 and Cz-P4 are the inptiteofoherence analysis
in which coherence between the two time seriehabe difference exhibits
statistically significant phase stability over tifie., significant coherence
values). An example of 19 leads = 171 combimatis in Figure 30.

Montage: Default EEG ID: Theta-CZ-Abs Phase

Delta Coherence

Fig. 31 — Example of coherence of the time seriekinstantaneous phase
differences for all 171 combinations of 19 electragb. Analyses were
produced using the NeuroGuide Lexicor demo from thelownload at




www.appliedneuroscience.com

37 — Coherence Between Two Time Series of Phase &ss

Defined as the average Coherence of the First Bievey of the Time
Series of Instantaneous Phase Differences (i.egs® Reset”) between any
pair of electrodes with respect to a common eléetro For example, the
two time series of phase resets for Cz-P3 and Car@the input to the
coherence analysis in which there is significarggghstability between the
two time series of phase reset. See sectionrl&nfexplanation of phase
reset. An example of 19 leads = 171 combinatisms Figure 31.



IMontage: Default EEG ID: Cz-absphase-theta

Delta Coherence

Fig. 31 — Example of coherence of the time seriekinstantaneous phase re1
set for all 171 combinations of 19 electrodes. Atees were produced
using the NeuroGuide Lexicor demo from the downloadct
www.appliedneuroscience.com

38 — Phase Difference Between Two Phase DiffererCiene Series
Defined as the average Phase difference of the Tenies of
Instantaneous Phase Differences between two cleawmitbl respect to a
common reference. A map of all pair wise combarett (19 leads = 171
combinations with respect to Cz) is useful to viegethe full manifold of



relationships as defined by the phase differendbefime series of phase
differences. An example of 19 leads = 171 comnatis in Figure 32.

Montage: Default EEG ID: Theta-CZ-Abs Phase

Delta Phase Difference (Deg)

Fig. 32 — Example of phase difference of the tim&sges of instantaneous
phase differences for all 171 combinations of 19eztrodes. Analyses were
produced using the NeuroGuide Lexicor demo from thelownload at
www.appliedneuroscience.com




39 — Phase Difference of Phase Reset

Defined as the average phase difference of tls¢ Berivative of the
Time Series of Instantaneous Phase DifferencesRi@mse Reset) between
two electrode combinations referenced to a comratarence as explained
in section 34. See section 15 for an explanatigghase reset. An example
of 19 leads = 171 combinations is in Figure 33.

Montage: Default EEG ID: Cz-absphase-theta

Delta Phase Difference (Deg)




Fig. 33 — Example of phase differences of the tinseries of instantaneous
phase re-set for all 171 combinations of 19 electles. Analyses were
produced using the NeuroGuide Lexicor demo from thelownload at
www.appliedneuroscience.com

40 — Bi-Spectral Cross-Frequency Power Correlations

A common method of evaluating bi-spectral relatie® compute
the cross-frequency power correlation (Linas e2@0)5). The method
involves computing the covariance of power at dastpuency bin with
respect to all other frequency bins. An examplehiown for the cross-
frequency power correlations from 1 to 50 Hz in efalkness, drowsiness
and sleep in the same subject as shown in

CROSS-FREQUENCY ANALYSES OF BRAIN STATE

AWAKE DROWSY SLEEP - STAGE 1

Fig. 34 — Example of bi-spectrum of cross-frequepawer correlations

from 1 to 50 Hz from Cz in the same subject butifiérent brain states, i.e.

wakefulness, drowsy and sleep.

41- Cross-Frequency Phase Synchrony or m:n Phaser@ronization



Cross-frequency phase synchrony is also calledpimase
synchronization (Schack et al, 2002; 200®)hase synchronizations the
process by which two or more cyclic signals tendgaillate with a
repeating sequence of relative phase angles. Rlgaskronisation is
usually applied to two waveforms of the same freqyewith identical
phase angles with each cycle. However it can bbeabib there is an integer
relationship of frequency, such that the cycliasig share a repeating
sequence of phase angles over consecutive cydleseTinteger
relationships are the so called Arnold Tongues wkatlow from
bifurcation of the circle map” (www.wikipedia.orgjkovsky et al, 2003).

We mathematically define cross-frequency phaselspny as the
average Second Derivative of the instantaneouseptifference between
different frequencies. Different frequencies, @4gHz vs. 7 Hz results in a
continuum of changing phase differences and in trbequencies (frequency
mixing). However, when the two frequencies arepted and do not
change over time (i.e., phase synchrony), theffitstederivative of the
phase difference between two different frequenisiesnstant. That is, if
two different frequencies are coupled over timenttiee ' derivative is
constant, although different depending on the dbffee in phase angle. In
order to measure phase synchrony across frequahgescessary to
compute the ? derivative of the phase differences which = zehemthere
is phase synchrony. That is, a constant firsieve results in a zerd'?
derivative. Thus, the averag¥ derivative is a direct measure of cross-
frequency phase synchrony, because the lower grage ¥ derivative
then the greater is phase synchrony across fremgsend-igures 35 to 39
illustrate the measure of cross-frequency phasehsgny and Figures 40
and 41 are examples of cross-frequency phasedsindtion and cross-
frequency phase lock duration.
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Fig. 35 Example of 4 different frequencies argrtphase relations.
Instantaneous phase differences change at eachmhofrtane.
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n:m phase synchrony.

Figure 38 summarizes the important relationshigvbenh cross-

frequency phase locking and the constant phasereliftes and thé®?
derivative = 0.
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Fig. 38 — lllustrates the constant phase differsrasea function of time when two

different frequencies are phase locked. Crospdracy phase locking and cross-
frequency phase shift are measured by fie@rivative of instantaneous cross-frequel
phase differences which = 0 when there is phasergand is > 0 when there is a cros

ncy
S-

frequency phase shift.

Figure 39 illustrates the measures that are cordpnterder to
guantify cross-frequency phase lock duration andsfrequency phase
shift duration in milliseconds. The average magte of phase locking is
directly related to the average magnitude of tHel@rivative during the
phase lock periods.



Cross-Frequency Phase Reset Metrics
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Fig. 39- lllustration of how cross-frequency phések duration and cross-frequency
phase shift duration are measured and quantifiediliiseconds.

Figure 40 shows an example of cross-frequency pétafteduration and
figure 41 shows and example of cross-frequencyelwak duration in
milliseconds for each cross-frequency coupling.




FP1 Cross-Frequency Phase Lock Duration

Fig. 40- Example of cross-frequency phase locktthmgmsec) of the EEG
recorded from Fpl with respect to the 18 remaisiceglp electrodes. This
figure can be generated using the free NeuroGuedeodthat can be
downloaded at www.appliedneuroscience.com




FP1 Cross-Frequency Phase Shift Duration
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Fig. 41- Example of cross-frequency phase shifatiom (msec) of the EEG
recorded from Fp1l with respect to the 18 remaisicagp electrodes. This
figure can be generated using the free NeuroGwedeodhat can be
downloaded at www.appliedneuroscience.com
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43- Appendix - A
A.1 — Minimization of RMS Error

Time series are sequences, discrete or continobgsiantitative data of specific
moments in time. They may be simple such as@esimumerical observation at each
moment of time and studied with respect to thestrdiution in time, or multiple in which
case they consist of a number of separate quantai®ilated according to a common
time base (e.g., a mixture of sine waves beginatrtgne = 0).

The statistics of a time series is the sciengaedicting an immediate or long
time future sequence based on a sample of pastisegjuguantitative data. In general,
the longer the sample of past quantitative momeintisne then the greater the accuracy
of predicting future sequence(s).

The fine details of accuracy of prediction of theure based upon past samples is
generally governed by the relationship of 1 / s@ftN. To understand why this is the
case let us define a statistic of a time serisgth@n the “signal” or “message” that is
transmitted and the “noise” or randomness thasitpeal is embedded in. This
relationship was described by the Nobel laureateridet Wiener (N. Wiener, Time
Series, MIT Press, Cambridge, Mass., 1949) in whitime series is a combination of a
signal + noise or the signal f(t) and the mesggtie+ noise, where noise is defined as
f(t) — g(t). In other words noise is defined las tifference between the “message” and
the measured quantitative values or f(t) — gfgr example, noise = 0 when f(t) — g(t) =
0.

Let us consider the output of an electrical ciredth input f(t). If the circuit has
the response A (t) to a unit-step function, thendhtput is given by:

F(t) = TA‘(r) f(t-7)d7+AQ)f (1)

The goal is to have F(t) approximate as closelyassible the message g(f). That
is, we want to minimize [F(t) — g(t)]. As a criiten

The Ergotic goal of time series statistics isninimize the difference between the
measured values f(t) and the “signal” g(t).



The time series can be divided into two generagates: 1- the statistics of short-time
biological data and other short-time interval egesuch as economic, sociological, etc.
and 2- long time span events such as astrononmedérological, geologic and
geophysical data . . . .. .. — to be continued
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Instantaneous Coherence and Phase Difference

Complex demodulation was used to compute instanizscoherence and phase-
differences (Granger and Hatanaka, 1964; Otnes€aondhson, 1972; Bloomfield, 2000).
This method first multiples a time series by thenptex function of a sine and cosine at a
particular frequency followed by a low pass filtehich removes all but very low
frequencies and transforms the time series int@amaneous amplitude and phase and an
“instantaneous” spectrum (Bloomfield, 2000). Weqgal quotations around the term
“‘instantaneous” to emphasize that there is alwayade-off between time resolution and
frequency resolution. The broader the band wikiéhhigher the time resolution but the
lower the frequency resolution and vice versa (Bibeld, 2000). For example, if we
multiply a time series {xt=1, ..., n} by sinect and cosoet and then apply a low pass
filter F, we have

Z =F (X sinat)
Z"=F (X, cosa,t)

1/2
and 2[(Zt')2 +(Zt")2] is an estimate of the ‘“instantaneous” amplitude tioé

I
t
n
t

frequencywp at time t andtan™ is an estimate of the “instantaneous” phase at

time t.

The instantaneous cross-spectrum is computed tieea are two time series{y
t=1,...,nfand{y, t=1,...,n}andif F[]is a filter pasgironly frequencies near
zero, then, as above

R’ =F[y,sinat] + F[y, cosmt] =‘F [yte“‘bt ]2‘ is the estimate of the

amplitude of frequency at time t and

F [yt sinwot]
F [yt cosa)ot]

@ = tan‘l(

timet and since

J is an estimate of the phase of frequengwt



F [yte"‘"’t] =Re*,
and likewise,
Flye«]=Rre*
the instantaneous cross-spectrum is

v, =Flye“|F[ye]

— Rt R:e' [¢t '¢t']

and the instantaneous coherence is

however coherence is computed as the average aiirteeand cosine functions over an
interval of time or

Ctiw)=——+
(t.) R’R'?

The instantaneous phase-differencepjs— ¢t' which is also the arctan of the imaginary

part of \; divided by the real part (or the quadspectrumddigiby the cospectrum).

Computation of the First Derivatives of the Time Sees of Coherence and Phase
Angles

The first derivative of the time series of phasiedences between all pair wise
combinations of two channels was computed in otaeletect advancements and reset of
phase-differences. The Savitzgy-Golay procedures waed to compute the first
derivatives of the time series using a window langjt3 time points and the polynomial
degree of 2 (Press et al, 1994). The unitsefithderivative are in degrees/point which
is normalized to degrees/second and degrees/rdlnekin the case of EEG. The second
derivative was computed using a window length ah8l a polynomial degree of 3 and is
in units of degrees/secondr degrees/millisecofidn the case of EEG. For simplicity,
in NeuroGuide the units of the first derivative @fphase time series is degrees per
centiseconds (i.e., degreed/esdegrees/10 mség.
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Listing of the Relevant Connectivity Equations. Al of the equations
below can be evaluated using a hand calculator arttle equations can
be easily programmed by a competent programmer. $8dhe sections
above for details. The goal is to help develop stdardization and
simplification for the implementation of EEG connedtivity measures:

1- Pearson Product Correlation Coefficient

NY XY -3 XFY
JINT X -ExylINTYE -y

2- The cospectrum and quadspectrum (see section 9)

a(xf;) = cosine coefficient for the frequency)(for channel X
b(xf,) = sine coefficient for the frequency)(for channel X

u(yf,) = cosine coefficient for the frequency)(for channel Y
v(yf,) = sine coefficient for the frequency)(for channel Y

The cospectrum and quadspectrum are algebraicallyafined as:
Cospectrum (f,f,) = a(xfy) u(yf,) + b(xfy) v(yf,)

Quadspectrum (fi,fo) = a(xfy) v(yf,) — b(xfy) u(yf,)

3- Auto-spectrum

F(x) = @ (x) + b° (x))

4- The cross-spectrumamplitude:

=J(@(x)u(y) +b(x)v(y))? + (@(x)v(y) = b(x)u(y))?
5- Coherence

(D @0OIu(y) +bOIv(Y))* + (3 (@a(x)v(y) ~b(X)u(y)))*
Coh (f) = M N
0 2. (@) +b(x)*)> u(y)* +v(y)*)




6- Phase Delay or phase difference

2 @(x)v(y) = b(x)u(y))
Phase difference (f) = Arctan

;(a(X)U(Y) +b(x)v(y))

7- Auto Channel Cross-Frequency Coherence(f,) (ACC) after
complex demodulation:

Q. (alx f)u(x" f,) +b(x V(X" £,))* + (3 (a(x f)v(X" f,) —b(x f)u(x" f,)))*

e > (@(x £,)? +b(x £,)1) T u(x" £,)? +V(x" 1,)?)

8- Cross Channel Cross-Frequency Coherence,ft) (CCC) for channels
X and Y after complex demodulation

Q. @lx f)uly f,) +b(x f)v(y' £,))* + Q- (@(x f)V(Y' ) —b(x f)u(y' f,)))*
CCC =— 2 2 - 2 2
D@ 1) +b(x £,)*) D u(y f,)* +v(y' ,)%)

9- Auto Channel Cross-Frequency phase difference,(ff,) (ACP) after
complex demodulation

D (@(x f)v(x" f,) —=b(x f)u(x" f,))
ACP = Arctan
Z(a(xl fu(x" f,) +b(x f)v(x" f,))

10- Cross-Channel Cross-Frequency Phase Differenfie,f,) (CCP) after
complex demodulation

Z((a(xl fv(y' f,) —b(x f)u(y f,))

CCP = Arctan
Z((a(x' fou(y' f,) +b(x f)v(y'f,))




Equations for sections 31 to 36 will be added fatare update.



